Conjugate heat transfer in porous triangular enclosures with thick bottom wall

Author(s):  
Yasin Varol ◽  
Hakan F. Oztop ◽  
Ioan Pop

PurposeThe purpose of this paper is to study the conjugate heat transfer via natural convection and conduction in a triangular enclosure filled with a porous medium.Design/methodology/approachDarcy flow model was used to write governing equations with Boussinesq approximation. The transformed governing equations are solved numerically using a finite difference technique. It is assumed that the enclosure consists of a conducting bottom wall of finite thickness, an adiabatic (insulated) vertical wall and a cooled inclined wall.FindingsFlow patterns, temperature and heat transfer were presented at different dimensionless thickness of the bottom wall, h, from 0.05 to 0.3, different thermal conductivity ratio between solid material and fluid, k, from 0.44 to 283 and Rayleigh numbers, Ra, from 100 to 1000. It is found that both thermal conductivity ratio and thickness of the bottom wall can be used as control parameters for heat transport and flow field.Originality/valueIt is believed that this is the first paper on conduction‐natural convection in porous media filled triangular enclosures with thick wall. In the last years, most of the researchers focused on regular geometries such as rectangular or square cavity bounded by thick wall.

Author(s):  
H. Hadim ◽  
K. Blecker

A numerical solution of heat transfer by combined natural convection and surface radiation in a square enclosure with thick adiabatic top and bottom walls and isothermal vertical walls is presented. The present model was used to obtain new results with the addition of thermal conduction at the thick top and bottom walls for a thermal conductivity ratio, K = ksolid/kfluid, that ranges from 0 to 10, emissivity of the adiabatic walls that ranges from 0 to 1, and the Rayleigh Number that ranges from 103 to 106. The model was validated by comparing the results to a benchmark solution and other solutions found in the literature. The results showed that with an increase in thermal conductivity ratio, the flow circulation decreases while the average Nusselt Number increases indicating increased heat transfer across the thick walls and the fluid in the corners. The results indicate that while past studies have shown negligible impact of the emissivity of the adiabatic walls on characteristics of the flow and heat transfer within the cavity, when a wall with moderate heat capacity and conductivity is considered, the resulting flow velocity and temperature distribution within the cavity are found to be significantly influenced by the thick wall emissivity. As the conductivity ratio increases this discrepancy between thin and thick walls becomes greater, there is further need for a more complex and accurate model including the thick walls. The results also showed that an increase in the emissivity of the adiabatic walls results in a slight decrease in the average Nusselt Number.


2014 ◽  
Vol 24 (8) ◽  
pp. 1888-1905 ◽  
Author(s):  
M.M. Rahman ◽  
Hakan Oztop ◽  
S. Mekhilef ◽  
R. Saidur ◽  
A. Chamkha ◽  
...  

Purpose – The purpose of this paper is to examine the effects of thick wall parameters of a cavity on combined convection in a channel. In other words, conjugate heat transfer is solved. Design/methodology/approach – Galerkin weighted residual finite element method is used to solve the governing equations of mixed convection. Findings – The streamlines, isotherms, local and average Nusselt numbers are obtained and presented for different parameters. It is found heat transfer is an increasing function of dimensionless thermal conductivity ratio. Originality/value – The literature does not have mixed convection and conjugate heat transfer problem in a channel with thick walled cavity.


Author(s):  
Abderrahim Bourouis ◽  
Abdeslam Omara ◽  
Said Abboudi

Purpose – The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated. Design/methodology/approach – The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm. Findings – From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall. Practical implications – Some applications: building applications, furnace design, nuclear reactors, air solar collectors. Originality/value – From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.


2014 ◽  
Vol 24 (8) ◽  
pp. 1813-1830 ◽  
Author(s):  
Majid Ashouri ◽  
Mohammad Behshad Shafii ◽  
Hossein Rajabi Kokande

Purpose – The purpose of this paper is to study the influence of magnetic field on natural convection inside the enclosures partially filled with conducting square solid obstacles. Also, the effect of thermal conductivity ratio between the solid and fluid materials is investigated for different number of solid blocks. Design/methodology/approach – The dimensionless governing equations are transformed into sets of algebraic equations using finite volume method and momentum equations are solved by the SIMPLE algorithm with the hybrid scheme. The validation of the numerical code was conducted by comparing the results of average Nusselt number with previously published works. Findings – The results indicate that both the magnetic field and solid blocks can significantly affect the flow and temperature fields. It is shown that for a given Rayleigh number, variation of Nusselt number might be increasing or decreasing with change in solid-to-fluid thermal conductivity ratio depending on magnetic field strength and number of solid blocks. Originality/value – No work has been reported previously on the effect of magnetic field on natural convection flow in a cavity partially filled with square solid blocks. The numerical analysis of conductivity ratio between the solid and fluid materials under the effect of magnetic field have been carried out for the first time.


Mechanika ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 126-133
Author(s):  
Thansekhar M.Rathinam

A numerical study of conjugate free convection heat transfer of Al2O3/water nanofluid inside a differentially heated square enclosure with a baffle attached to its hot wall has been carried out. A detailed parametric study has been carried out to analyze the effect of Rayleigh number (104 < Ra < 106), length, thickness and position of baffle, conductivity ratio and volume fraction of the nanoparticle (0<<0.2) on heat transfer. The thermal conductivity ratio of the baffle plays a major role on the conjugate heat transfer inside the enclosure. Higher the baffle length better is the effectiveness of the baffle. The average Nusselt number is found to be an increasing function of both thermal conductivity ratio and volume fraction of the nanofluid. The minimum enhancement of conjugate heat transfer is 30% when Al2O3/water nanofluid of 0.1 volume fraction is used for the entire range of Rayleigh number considered.


Author(s):  
Ahmed Kadhim Hussein ◽  
Muhaiman Alawi Mahdi ◽  
Obai Younis

In this research, the entropy production of the conjugate heat transfer in a tilted porous cavity in respect to heat source and solid walls locations has been studied numerically. Three different cases of the cavity with finite walls thickness and heat source locations are considered in the present study. For both cases one and two, the cavity considered has a vertical finite walls thickness, while the cavity with the horizontal finite walls thickness is considered for case three. For cases one and two, the left sidewall of the cavity is exposed to heat source, whereas the rest of this wall as well as the right sidewall are adiabatic. The upper and lower cavity walls are adiabatic. For case three, the lower wall is exposed to a localized heat source, while the rest of it is assumed adiabatic. The upper wall is cold, whereas the left and right sidewalls are adiabatic. The flow and thermal fields properties along with the entropy production are computed for the modified Rayleigh number (150 ? Ram ? 1000), thermal conductivity ratio (1 ? Kr ? 10), heat source length (0.2 ? B ? 0.6), aspect ratio (0.5 ? AR ? 2) and walls thickness (0.1 ? D1 ? 0.2 and 0.1 ? D2 ? 0.2) respectively. The results show that, the maximum values of the entropy generated from fluid friction develop close to the cavity wall-fluid interfacial, while the maximum values of the entropy generated from heat transfer develop nearby the heat source region. The average Bejan number (Beav) is higher than (0.5) for cases one and two. While for case three, it was found to be less than (0.5). Also, the results show that as the modified Rayleigh number, thermal conductivity ratio, heat source length and aspect ratio increased, the fluid flow intensity in the cavity increased. While, it decreased when the walls thickness increased. From the results, it is concluded that case three gives a higher heat transfer enhancement. The obtained results are compared against another published results and a good agreement is found between them.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdeslam Omara ◽  
Mouna Touiker ◽  
Abderrahim Bourouis

Purpose This paper aims to consider numerical analysis of laminar double-diffusive natural convection inside a non-homogeneous closed medium composed of a saturated porous matrix and a clear binary fluid under spatial sinusoidal heating/cooling on one side wall and uniform salting. Design/methodology/approach The domain of interest is a partially square porous enclosure with sinusoidal wall heating and cooling. The fluid flow, heat and mass transfer dimensionless governing equations associated with the corresponding boundary conditions are discretized using the finite volume method. The resulting algebraic equations are solved by an in-house FORTRAN code and the SIMPLE algorithm to handle the non-linear character of conservation equations. The validity of the in-house FORTRAN code is checked by comparing the current results with previously published experimental and numerical works. The effect of the porous layer thickness, the spatial frequency of heating and cooling, the Darcy number, the Rayleigh number and the porous to fluid thermal conductivity ratio is analyzed. Findings The results demonstrate that for high values of the spatial frequency of heating and cooling (f = 7), temperature contours show periodic variations with positive and negative values providing higher temperature gradient near the thermally active wall. In this case, the temperature variation is mainly in the porous layer, while the temperature of the clear fluid region is practically the same as that imposed on the left vertical wall. This aspect can have a beneficial impact on thermal insulation. Besides, the porous to fluid thermal conductivity ratio, Rk, has practically no effect on Shhot wall, contrary to Nuinterface where a strong increase is observed as Rk is increased from 0.1 to 100, and much heat transfer from the hot wall to the clear fluid via the porous media is obtained. Practical implications The findings are useful for devices working on double-diffusive natural convection inside non-homogenous cavities. Originality/value The authors believe that the presented results are original and have not been published elsewhere.


Author(s):  
Tahar Tayebi ◽  
Ali J. Chamkha

Purpose The purpose of this paper is to study the influence of magnetic field on entropy generation and natural convection inside an enclosure filled with a hybrid nanofluid and having a conducting wavy solid block. Also, the effect of fluid–solid thermal conductivity ratio is investigated. Design/methodology/approach The governing equations that are formulated in the dimensionless form are discretized via finite volume method. The velocity–pressure coupling is assured by the SIMPLE algorithm. Heat transfer balance is used to verify the convergence. The validation of the numerical results was performed by comparing qualitatively and quantitatively the results with previously published investigations. Findings The results indicate that the magnetic field and the conductivity ratio of the wavy solid block can significantly affect the dynamic and thermal field and, consequently, the heat transfer rate and entropy generation because of heat transfer, fluid friction and magnetic force. Originality/value To the best of the authors’ knowledge, the present numerical study is the first attempt to use hybrid nanofluid for studying the entropy generation because of magnetohydrodynamic natural convective flow in a square cavity with the presence of a wavy circular conductive cylinder. Irreversibilities due to magnetic effect are taken into account. The effect of fluid–solid thermal conductivity ratio is considered.


Author(s):  
M. McGarry ◽  
C. Bonilla ◽  
I. Metzger

A validated computational model was created to simulate the heat transfer from a heated surface using liquid metals and alloys during conjugate heat transfer. This model explores the effect of the Rayleigh number, Prandtl number, thermal conductivity ratio, and aspect ratio on the Nusselt number along the hot surface. The data will show how to keep the temperature sensitive components along the hot wall cool by maximizing the amount of heat removed from the hot wall. The data show three distinct regions that occur as a function of the Rayleigh number for a fixed k∗ and d∗. The data also show that the thermal conductivity ratio between the fluid and the solid conducting block has little effect on the Nusselt number at a fixed Rayleigh number. However, when examining the effect of the aspect ratio on the Nusselt number, two distinct regions can be seen. The results demonstrate that in order to keep the temperature sensitive components cool along the hot wall, one would want to have large Rayleigh and Prandtl numbers. The easiest way to achieve large Rayleigh numbers is by increasing the height of the enclosure. Large Prandtl numbers can be achieved by choosing a fluid that is highly conductive. In addition, the choice of material for the center solid conducting block does not impact the amount of heat removed from the hot wall. However, increased cooling can be achieved by decreasing the spacing between the hot and the cold wall.


2019 ◽  
Vol 29 (12) ◽  
pp. 4826-4849 ◽  
Author(s):  
Shantanu Dutta ◽  
Arup Kumar Biswas ◽  
Sukumar Pati

Purpose The purpose of this paper is to analyze the natural convection heat transfer and irreversibility characteristics in a quadrantal porous cavity subjected to uniform temperature heating from the bottom wall. Design/methodology/approach Brinkmann-extended Darcy model is used to simulate the momentum transfer in the porous medium. The Boussinesq approximation is invoked to account for the variation in density arising out of the temperature differential for the porous quadrantal enclosure subjected to uniform heating on the bottom wall. The governing transport equations are solved using the finite element method. A parametric study is carried out for the Rayleigh number (Ra) in the range of 103 to 106 and Darcy number (Da) in the range of 10−5-10−2. Findings A complex interaction between the buoyant and viscous forces that govern the transport of heat and entropy generation and the permeability of the porous medium plays a significant role on the same. The effect of Da is almost insignificant in dictating the heat transfer for low values of Ra (103, 104), while there is a significant alteration in Nusselt number for Ra ≥105 and moreover, the change is more intense for larger values of Da. For lower values of Ra (≤104), the main contributor of irreversibility is the thermal irreversibility irrespective of all values of Da. However, the fluid friction irreversibility is the dominant player at higher values of Ra (=106) and Da (=10−2). Practical implications From an industrial point of view, the present study will have applications in micro-electronic devices, building systems with complex geometries, solar collectors, electric machinery and lubrication systems. Originality/value This research examines numerically the buoyancy driven heat transfer irreversibility in a quadrantal porous enclosure that is subjected to uniform temperature heating from the bottom wall, that was not investigated in the literature before.


Sign in / Sign up

Export Citation Format

Share Document