Thermosolutal natural convection in a partly porous cavity with sinusoidal wall heating and cooling

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdeslam Omara ◽  
Mouna Touiker ◽  
Abderrahim Bourouis

Purpose This paper aims to consider numerical analysis of laminar double-diffusive natural convection inside a non-homogeneous closed medium composed of a saturated porous matrix and a clear binary fluid under spatial sinusoidal heating/cooling on one side wall and uniform salting. Design/methodology/approach The domain of interest is a partially square porous enclosure with sinusoidal wall heating and cooling. The fluid flow, heat and mass transfer dimensionless governing equations associated with the corresponding boundary conditions are discretized using the finite volume method. The resulting algebraic equations are solved by an in-house FORTRAN code and the SIMPLE algorithm to handle the non-linear character of conservation equations. The validity of the in-house FORTRAN code is checked by comparing the current results with previously published experimental and numerical works. The effect of the porous layer thickness, the spatial frequency of heating and cooling, the Darcy number, the Rayleigh number and the porous to fluid thermal conductivity ratio is analyzed. Findings The results demonstrate that for high values of the spatial frequency of heating and cooling (f = 7), temperature contours show periodic variations with positive and negative values providing higher temperature gradient near the thermally active wall. In this case, the temperature variation is mainly in the porous layer, while the temperature of the clear fluid region is practically the same as that imposed on the left vertical wall. This aspect can have a beneficial impact on thermal insulation. Besides, the porous to fluid thermal conductivity ratio, Rk, has practically no effect on Shhot wall, contrary to Nuinterface where a strong increase is observed as Rk is increased from 0.1 to 100, and much heat transfer from the hot wall to the clear fluid via the porous media is obtained. Practical implications The findings are useful for devices working on double-diffusive natural convection inside non-homogenous cavities. Originality/value The authors believe that the presented results are original and have not been published elsewhere.

Author(s):  
Yasin Varol ◽  
Hakan F. Oztop ◽  
Ioan Pop

PurposeThe purpose of this paper is to study the conjugate heat transfer via natural convection and conduction in a triangular enclosure filled with a porous medium.Design/methodology/approachDarcy flow model was used to write governing equations with Boussinesq approximation. The transformed governing equations are solved numerically using a finite difference technique. It is assumed that the enclosure consists of a conducting bottom wall of finite thickness, an adiabatic (insulated) vertical wall and a cooled inclined wall.FindingsFlow patterns, temperature and heat transfer were presented at different dimensionless thickness of the bottom wall, h, from 0.05 to 0.3, different thermal conductivity ratio between solid material and fluid, k, from 0.44 to 283 and Rayleigh numbers, Ra, from 100 to 1000. It is found that both thermal conductivity ratio and thickness of the bottom wall can be used as control parameters for heat transport and flow field.Originality/valueIt is believed that this is the first paper on conduction‐natural convection in porous media filled triangular enclosures with thick wall. In the last years, most of the researchers focused on regular geometries such as rectangular or square cavity bounded by thick wall.


2014 ◽  
Vol 24 (8) ◽  
pp. 1813-1830 ◽  
Author(s):  
Majid Ashouri ◽  
Mohammad Behshad Shafii ◽  
Hossein Rajabi Kokande

Purpose – The purpose of this paper is to study the influence of magnetic field on natural convection inside the enclosures partially filled with conducting square solid obstacles. Also, the effect of thermal conductivity ratio between the solid and fluid materials is investigated for different number of solid blocks. Design/methodology/approach – The dimensionless governing equations are transformed into sets of algebraic equations using finite volume method and momentum equations are solved by the SIMPLE algorithm with the hybrid scheme. The validation of the numerical code was conducted by comparing the results of average Nusselt number with previously published works. Findings – The results indicate that both the magnetic field and solid blocks can significantly affect the flow and temperature fields. It is shown that for a given Rayleigh number, variation of Nusselt number might be increasing or decreasing with change in solid-to-fluid thermal conductivity ratio depending on magnetic field strength and number of solid blocks. Originality/value – No work has been reported previously on the effect of magnetic field on natural convection flow in a cavity partially filled with square solid blocks. The numerical analysis of conductivity ratio between the solid and fluid materials under the effect of magnetic field have been carried out for the first time.


Author(s):  
Abderrahim Bourouis ◽  
Abdeslam Omara ◽  
Said Abboudi

Purpose – The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated. Design/methodology/approach – The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm. Findings – From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall. Practical implications – Some applications: building applications, furnace design, nuclear reactors, air solar collectors. Originality/value – From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.


2019 ◽  
Vol 30 (6) ◽  
pp. 2845-2859 ◽  
Author(s):  
Reza Dadsetani ◽  
Ghanbar Ali Sheikhzadeh ◽  
Mohammad Reza Hajmohammadi ◽  
Mohammad Reza Safaei

Purpose Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded high-conductivity material and provided microchannel heat sink are two common cooling methods. The former is expensive to implement while the latter needs micro-pump, which consumes energy to circulate the flow. The aim of this study is providing a new configuration and method for improving the performance of electronic components. Design/methodology/approach To manage these challenges and improve the cooling efficiency, a novel method named Hybrid is presented here. Each method's performance has been investigated, and the results are widely compared with others. Considering the micro-pump power, the supply of the microchannel flow and the thermal conductivity ratio (thermal conductivity ratio is defined as the ratio of thermal conductivity of high thermal conductivity material to the thermal conductivity of base solid), the maximum disk temperature of each method was evaluated and compared to others. Findings The results indicated that the Hybrid method can reduce the maximum disk temperature up to 90 per cent compared to the embedded high thermal conductivity at the same thermal conductivity ratio. Moreover, the Hybrid method further reduces the maximum disk temperature up to 75 per cent compared to the microchannel, at equivalent power consumption. Originality/value The information in this research is presented in such a way that designers can choose the desired composition, the limited amount of consumed energy and the high temperature of the component. According to the study of radial-hybrid configuration, the different ratio of microchannel and materials with a high thermal conductivity coefficient in the constant cooling volume was investigated. The goal of the investigation was to decrease the maximum temperature of a plate on constant energy consumption. This aim has been obtained in the radial-hybrid configuration.


Author(s):  
H. Hadim ◽  
K. Blecker

A numerical solution of heat transfer by combined natural convection and surface radiation in a square enclosure with thick adiabatic top and bottom walls and isothermal vertical walls is presented. The present model was used to obtain new results with the addition of thermal conduction at the thick top and bottom walls for a thermal conductivity ratio, K = ksolid/kfluid, that ranges from 0 to 10, emissivity of the adiabatic walls that ranges from 0 to 1, and the Rayleigh Number that ranges from 103 to 106. The model was validated by comparing the results to a benchmark solution and other solutions found in the literature. The results showed that with an increase in thermal conductivity ratio, the flow circulation decreases while the average Nusselt Number increases indicating increased heat transfer across the thick walls and the fluid in the corners. The results indicate that while past studies have shown negligible impact of the emissivity of the adiabatic walls on characteristics of the flow and heat transfer within the cavity, when a wall with moderate heat capacity and conductivity is considered, the resulting flow velocity and temperature distribution within the cavity are found to be significantly influenced by the thick wall emissivity. As the conductivity ratio increases this discrepancy between thin and thick walls becomes greater, there is further need for a more complex and accurate model including the thick walls. The results also showed that an increase in the emissivity of the adiabatic walls results in a slight decrease in the average Nusselt Number.


Author(s):  
Tahar Tayebi ◽  
Ali J. Chamkha

Purpose The purpose of this paper is to study the influence of magnetic field on entropy generation and natural convection inside an enclosure filled with a hybrid nanofluid and having a conducting wavy solid block. Also, the effect of fluid–solid thermal conductivity ratio is investigated. Design/methodology/approach The governing equations that are formulated in the dimensionless form are discretized via finite volume method. The velocity–pressure coupling is assured by the SIMPLE algorithm. Heat transfer balance is used to verify the convergence. The validation of the numerical results was performed by comparing qualitatively and quantitatively the results with previously published investigations. Findings The results indicate that the magnetic field and the conductivity ratio of the wavy solid block can significantly affect the dynamic and thermal field and, consequently, the heat transfer rate and entropy generation because of heat transfer, fluid friction and magnetic force. Originality/value To the best of the authors’ knowledge, the present numerical study is the first attempt to use hybrid nanofluid for studying the entropy generation because of magnetohydrodynamic natural convective flow in a square cavity with the presence of a wavy circular conductive cylinder. Irreversibilities due to magnetic effect are taken into account. The effect of fluid–solid thermal conductivity ratio is considered.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Marcelo J. S. de Lemos ◽  
Paulo H. S. Carvalho

This work presents a study of double-diffusive free convection in a porous square cavity under turbulent flow regime and with aiding drive. The thermal nonequilibrium model was employed to analyze the energy and mass transport across the enclosure. Governing equations were time- and volume-averaged according to the double-decomposition concept. Analysis of a modified Lewis number, Lem, showed that for porous media, this parameter presents opposite behavior when varying the thermal conductivity ratio or the Schmidt number, while maintaining the same value for Lem. Differently form free flow, the existence of the porous matrix contributes to the overall thermal diffusivity of the medium, whereas mass diffusivity is only effective within the fluid phase for an inert medium. Results indicated that increasing Lem through an increase in Sc reduces flow circulation inside porous cavities, reducing Nuw and increasing Shw. Results further indicate that increasing the buoyancy ratio N promotes circulation within the porous cavity, leading to an increase in turbulence levels within the boundary layers. Partial contributions of each phase of the porous cavity (solid and fluid) to the overall average Nusselt number become independent of n for higher values of the thermal conductivity ratio, ks/kf. Further, for high values of ks/kf, the average Nusselt number drops as N increases.


2021 ◽  
pp. 202-202
Author(s):  
Mourad Moderres ◽  
Toufik Benmalek ◽  
Aberkan Sofiane ◽  
Abderrahmene Ghezal ◽  
Said Abboudi ◽  
...  

This paper reports a numerical study of double-diffusive natural convection through an annular space delimited by a square cylinder on the outside and a cylindrical cylinder on the inside covered by a porous layer. The Darcy-Brinkmann-Forchheimer is used for modeling flow in both fluid and porous areas. The annular space is partially or completely filled with an isotropic porous medium. A finite volume method, using the Patankar-Spalding technique is used for solving the discretization of the dimensionless equations governing the problem. The effects of simultaneously applied thermal and solutal buoyancy forces on heat and mass transfer are shown in the results for a large range of buoyancy ratios N, Rayleigh number, and thermal conductivity. Streamlines, isotherms, and iso-concentrations are presented to analyze the flow structure transition from mass species dominated to thermal dominated flow. Results show that the buoyancy ratio can change the flow pattern and the increased thermal conductivity ratio can improve heat and mass transfer. A good agreement was obtained between the present results and those published were found.


2022 ◽  
Vol 961 (1) ◽  
pp. 012032
Author(s):  
Israa H Alkinani ◽  
Luma Fadhil Ali

Abstract The investigation of natural convection in an annular space between two concentric cylinders partially filled with metal foam is introduced numerically. The metal foam is inserted with a new suggested design that includes the distribution of metal foam in the annular space, not only in the redial direction, but also with the angular direction. Temperatures of inner and outer cylinders are maintained at constant value in which inner cylinder temperature is higher than the outer one. Naiver Stokes equation with Boussinesq approximation is used for fluid regime while Brinkman-Forchheimer Darcy model used for metal foam. In addition, the local thermal equilibrium condition in the energy equation of the porous media is presumed to be applicable for the present investigation. CFD ANSYS FLUENT software package (version 18.2) is used as a solver to this problem. Various parameters are examined; Rayleigh number, Darcy number, and thermal conductivity ratio to study the effect of them on fluid flow and heat transfer inside the annuli space in the suggested design of metal foam layer. current model is compared with the available published results and good agreement is noticed. Results showed that as Rayleigh number increases the dominated of convection mode increases and Nusselt increases. Also, Nusselt is larger at the higher Darcy and thermal conductivity ratio. It was found that at Rayleigh of 106 and thermal conductivity ratio of 104 Nusselt reach its higher value which is 6.69 for Darcy of 0.1 and 6.77 for Darcy of 0.001. A comparison between this design and the traditional design was established for Darcy 0.001 and thermal conductivity ratio 102, and its showed a good enhancement in Nusselt number and the greatest enhancement percentage was 44% at Rayleigh equal 5*104 while the lowest percentage is 6% for Rayleigh equal106.


2002 ◽  
Author(s):  
Julaporn Kaenton ◽  
Victoria Timchenko ◽  
Mohammed El Ganaoui ◽  
Graham de Vahl Davis ◽  
Eddie Leonardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document