Energy management-based design of a Wankel hybrid-electric UAV

2019 ◽  
Vol 92 (5) ◽  
pp. 701-715
Author(s):  
Teresa Donateo ◽  
Antonio Ficarella ◽  
Claudia Lucia De Pascalis

Purpose The purpose of this study is to investigate the optimization of design and energy management in a parallel hybrid-electric powertrain to replace the conventional engine of an existing tactical unmanned aerial vehicle (UAV) equipped with a Wankel engine with a pre-defined flight mission. The proposed powertrain can work in four different operating modes: electric, thermal, power-assist and charging. Design/methodology/approach The power request at propeller axis of each flight segment is used as input for an in-house model that calculates the overall fuel consumption throughout the mission (Mfuel) and the maximum payload weight (Wpay) by means of an average-point analysis. These outputs depend on the energy management strategy that is expressed by the power-split ratio between engine and electric phase (Uphase) of each mission phase, according to which the components of the hybrid system are sized. The in-house model is integrated into an optimization framework to find the optimal set of Uphase and battery size that minimizes Mfuel and maximizes Wpay. Findings It was found a 3.24% saving of the fuel mass burned throughout the mission (or, alternative an improvement of endurance by 4.3%) with about the same maximum-payload mass (+0.2%) of the original configuration, or a smaller fuel saving with +11% more payload. The fuel saving of 3.24% corresponds to −3.25% in total emissions of CO2 and a 2.34% reduction of the cost-per-mission. Practical implications This study demonstrates that environmental advantages, even if limited, can be already obtained from optimal design and management of the hybrid power system with today technologies while waiting for further benefits from the introduction of advanced technologies for batteries and electric machines. Originality/value The main novelties are the design of the powertrain on the basis of the energy management and the application of scalability and hybridization to Wankel engines.

2019 ◽  
Vol 304 ◽  
pp. 03010
Author(s):  
Teresa Donateo ◽  
Claudia Lucia De Pascalis ◽  
Antonio Ficarella

In a previous work, the authors optimized the hybrid electric power system for a tactical Unmanned Aerial Vehicle including a Wankel engine as thermal converter and a permanent magnet electric motor powered by lithium batteries. Startingfrom this optimal configuration, we address here the topic of a refined optimization of the energy management strategy, i.e. the contribution of the battery to the required power in each segment of the flight. The Equivalent Consumption Minimization Strategy (ECMS) was chosen with the goal of minimizing fuel consumption while fully depleting the energy stored in the battery from the beginning to the end of each mission.


Author(s):  
Carlos Villarreal-Hernandez ◽  
Javier Loranca-Coutino ◽  
Omar F. Ruiz-Martinez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesus E. Valdez-Resendiz ◽  
...  

Author(s):  
Hui Liu ◽  
Rui Liu ◽  
Riming Xu ◽  
Lijin Han ◽  
Shumin Ruan

Energy management strategies are critical for hybrid electric vehicles (HEVs) to improve fuel economy. To solve the dual-mode HEV energy management problem combined with switching schedule and power distribution, a hierarchical control strategy is proposed in this paper. The mode planning controller is twofold. First, the mode schedule is obtained according to the mode switch map and driving condition, then a switch hunting suppression algorithm is proposed to flatten the mode schedule through eliminating unnecessary switch. The proposed algorithm can reduce switch frequency while fuel consumption remains nearly unchanged. The power distribution controller receives the mode schedule and optimizes power distribution between the engine and battery based on the Radau pseudospectral knotting method (RPKM). Simulations are implemented to verify the effectiveness of the proposed hierarchical control strategy. For the mode planning controller, as the flattening threshold value increases, the fuel consumption remains nearly unchanged, however, the switch frequency decreases significantly. For the power distribution controller, the fuel consumption obtained by RPKM is 4.29% higher than that of DP, while the elapsed time is reduced by 92.53%.


Sign in / Sign up

Export Citation Format

Share Document