DTC strategies for three-switch three-phase inverter-fed induction motor drives

Author(s):  
Imen Nouira El Badsi ◽  
Bassem El Badsi ◽  
Ahmed Masmoudi

PurposeThis paper aims to investigate the performance of two novel direct torque control (DTC) schemes dedicated to three-switch three-phase inverter (B3-VSI), also called delta inverter, fed induction motor (IM) drives.Design/methodology/approachThe principle of operation of the B3-VSI-fed IM drive is recalled in a first step. Then, the basis of both proposed DTC strategies is presented. The first DTC scheme considers a subdivision of the stationary plane into three sectors and the application of the intrinsic as well as virtual voltage vectors to achieve the control combinations. While, the second DTC scheme considers a subdivision of the stationary plane into six sectors and a limitation of the voltage vectors incorporated in the look-up table to the three intrinsic ones.FindingsSimulation and experimental results have revealed that, under steady-state operation and transient conditions, the harmonic content of the IM stator phase currents is lower in the case of the DTC2 strategy, resulting in a lower ripple of electromagnetic torque. Furthermore, it has led to a quasi-circular shape of the locus described by the stator flux vector in the stationary plane.Research limitations/implicationsThis work should be extended to the synthesis and performance analysis of a new DTC strategy for B3-VSI-fed IM drive, which emulates the operation of the conventional six-switch three-phase inverter-fed IM drive.Originality/valueThe limitation associated with the reduced number of the intrinsic voltage vectors generated by the B3-VSI has been eradicated, thanks to the suitable synthesis of the look-up table incorporated in the DTC scheme.

2005 ◽  
Vol 41 (6) ◽  
pp. 1627-1636 ◽  
Author(s):  
R. Bojoi ◽  
F. Farina ◽  
G. Griva ◽  
F. Profumo ◽  
A. Tenconi

Author(s):  
Mohamed Chebaani ◽  
Amar Goléa ◽  
Med Toufik Benchouia ◽  
Noureddine Goléa

Purpose Direct Torque Control (DTC) of induction motor drives is a well-established technique owing to features such as fast dynamic and insensibility to motor parameters. However, conventional DTC scheme, based on comparators and the switching table, suffers from large torque and flux ripples. To improve DTC performance, this study aims to propose and implement a sensorless finite-state predictive torque control using extended Kalman Filter in dSPACE environment. Design/methodology/approach This paper deals with the design of an extended Kalman filter for estimating the state of an induction motor model and for sensorless control of systems using this type of motor as an actuator. A complex-valued model is adopted that simultaneously allows a simpler observability analysis of the system and a more effective state estimation. Findings Simulation and experimental results reveal that the drive system, associated with this technique, can effectively reduce flux and torque ripples with better dynamic and steady state performance. Further, the proposed approach maintains a constant switching frequency. Originality/value The proposed speed observer have been developed and implemented experimentally under different operating conditions such as parameter variation, no-load/load disturbances and speed variations in different speed operation regions.


Sign in / Sign up

Export Citation Format

Share Document