An optimized double-integral-sliding-mode-controller for a PV microgrid

Author(s):  
Swati Sucharita Pradhan ◽  
Raseswari Pradhan ◽  
Bidyadhar Subudhi

Purpose The dynamics of the PV microgrid (PVMG) system are highly nonlinear and uncertain in nature. It is encountered with parametric uncertainties and disturbances. This system cannot be controlled properly by conventional linear controllers. H− controller and sliding mode controller (SMC) may capable of controlling it with ease. Due to its inherent dynamics, SMC introduces unwanted chattering into the system output waveforms. This paper aims to propose a controller to reduce this chattering. Design/methodology/approach This paper presents redesign of the SMC by modifying its sliding surface and tuning its parameters by employing water-evaporation-optimization (WEO) based metaheuristic algorithm. Findings By using this proposed water-evaporation-optimization algorithm-double integral sliding mode controller (WEOA-DISMC), the chattering magnitude is diminished greatly. Further, to examine which controller between H8 controller and proposed WEOA-DISMC performs better in both normal and uncertain situations, a comparative analysis has been made in this paper. The considered comparison parameters are reference tracking, disturbance rejection and robust stability. Originality/value WEO tuned DISMC for PVMG system is the contribution.

Author(s):  
Swati Sucharita Pradhan ◽  
Raseswari Pradhan

Recently infiltration of large scale of microgrid systems into the power grid is recorded. Among these systems, photovoltaic (PV) based microgrid systems are more in demand due to its renewable, pollution free properties and abundantly available fuel. Grid integration of this microgrid system again enhanced its energy efficiency. But, dynamics of this PV based microgrid system is highly nonlinear and uncertain in nature. It suffers from parametric uncertainties. This kind of system can’t be controlled properly by conventional linear controllers. Sliding mode controller (SMC) is capable of controlling this kind of system with ease. However, SMC suffers from its inherent chattering introduction in the system output waveform. To reduce the chattering from the output waveform, there is requirement of some modification in the existing SMC structure dynamics. This paper presents an extended state observer based double integral sliding mode controller (DISMC) for this studied system. By using DISMC, the chattering magnitude is diminished greatly. Parameter uncertainties of the system lead to some unknown control states. These unknown states are identified by the state observer. Therefore, the proposed controller is more efficient in reference tracking, disturbance rejection and robust stability. To test the efficacies of the proposed controller, results of the studied system with this controller are compared with that of H∞ controller.


2021 ◽  
Author(s):  
Farjana Faria ◽  
Tushar Kanti Roy ◽  
Most. Mahmuda Khatun ◽  
Tanmoy Sarkar ◽  
Tabassum Haque ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6753
Author(s):  
Subarto Kumar Ghosh ◽  
Tushar Kanti Roy ◽  
Md. Abu Hanif Pramanik ◽  
Md. Apel Mahmud

This paper proposes a composite nonlinear controller combining backstepping and double-integral sliding mode controllers for DC–DC boost converter (DDBC) feeding by constant power loads (CPLs) to improve the DC-bus voltage stability under large disturbances in DC distribution systems. In this regard, an exact feedback linearization approach is first used to transform the nonlinear dynamical model into a simplified linear system with canonical form so that it becomes suitable for designing the proposed controller. Another important feature of applying the exact feedback linearization approach in this work is to utilize its capability to cancel nonlinearities appearing due to the incremental negative-impedance of CPLs and the non-minimum phase problem related to the DDBC. Second, the proposed backstepping double integral-sliding mode controller (BDI-SMC) is employed on the feedback linearized system to determine the control law. Afterwards, the Lyapunov stability theory is used to analyze the closed-loop stability of the overall system. Finally, a simulation study is conducted under various operating conditions of the system to validate the theoretical analysis of the proposed controller. The simulation results are also compared with existing sliding mode controller (ESMC) and proportional-integral (PI) control schemes to demonstrate the superiority of the proposed BDI-SMC.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 1275-1283
Author(s):  
Xiaohua Wu ◽  
Haider Zaman ◽  
Xiancheng Zheng ◽  
Shahbaz Khan ◽  
Husan Ali

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Bui Le Ngoc Minh ◽  
Van Van Huynh ◽  
Tam Minh Nguyen ◽  
Yao Wen Tsai

Most of the existing results for load frequency control of multi-area interconnected power systems can only be obtained when the norm of the aggregated uncertainties is bounded by a positive constant. This condition is difficult to achieve in real multi-area interconnected power systems. In this paper, a new load frequency control (LFC) for multi-area interconnected power systems is developed based on a decentralised adaptive double integral sliding mode control technique where the above limitation is eliminated. First, an adaptive gain tuning law is adopted to estimate the unknown upper bound of the aggregated uncertainties. Second, a double integral sliding surface based adaptive sliding mode controller is proposed to improve the transient performance of the closed loop system. Simulation results show that the proposed control law results in shortening the frequency’s transient response, avoiding the overshoot, rejecting disturbance better, maintaining required control quality in the wider operating range, and being more robust to uncertainties as compared to some existing control methods.


Author(s):  
Haris Calgan

Purpose This study aims to design and implement a novel tilt integral sliding mode controller and observer for sensorless speed control of a permanent magnet synchronous motor (PMSM). Design/methodology/approach A control strategy combining the tilt integral derivative (TID) with sliding mode control (SMC) is proposed to determine the tilt integral sliding mode manifold. Using this manifold, tilt integral sliding mode controller (TISMC) and observer (TISMO) are designed. The stabilities are verified by using Lyapunov method. To prove the effectiveness and robustness of proposed methods, sensorless speed control of PMSM is performed for various operating conditions such as constant and variable speed references, load disturbance injection, parameter perturbation, whereas sensor noises are not taken into account. The performance of proposed method is compared with TID controller, proportional integral derivative controller and conventional SMO. Findings Simulation results demonstrate that TISMC and TISMO have better performance in all operating conditions. They are robust against parameter uncertainties and disturbances. TISM based sensorless control of PMSM is well guaranteed with superior performance. Originality/value The proposed method has not been tackled in the literature. By combining TID and SMC, novel tilt integral sliding manifold is presented and used in designing of the controller and observer. It is proven by Lyapunov method that errors converge to zero.


Sign in / Sign up

Export Citation Format

Share Document