Shear wave propagation in magneto poroelastic medium sandwiched between self-reinforced poroelastic medium and poroelastic half space

2020 ◽  
Vol 37 (9) ◽  
pp. 3345-3359
Author(s):  
Sindhuja Ala ◽  
Rajitha Gurijala ◽  
Malla Reddy Perati

Purpose The purpose of this paper is to investigate the effect of reinforcement, inhomogeneity and initial stress on the propagation of shear waves. The problem consists of magneto poroelastic medium sandwiched between self-reinforced medium and poroelastic half space. Using Biot’s theory of wave propagation, the frequency equation is obtained. Design/methodology/approach Shear wave propagation in magneto poroelastic medium embedded between a self-reinforced medium and poroelastic half space is investigated. This particular setup is quite possible in the Earth crust. All the three media are assumed to be inhomogeneous under initial stress. The significant effects of initial stress and inhomogeneity parameters of individual media have been studied. Findings Phase velocity is computed against wavenumber for various values of self-reinforcement, heterogeneity parameter and initial stress. Classical elasticity results are deduced as a particular case of the present study. Also in the absence of inhomogeneity and initial stress, frequency equation is discussed. Graphical representation is made to exhibit the results. Originality/value Shear wave propagation in magneto poroelastic medium embedded between a self-reinforced medium, and poroelastic half space are investigated in presence of initial stress, and inhomogeneity parameter. For heterogeneous poroelastic half space, the Whittaker’s solution is obtained. From the numerical results, it is observed that heterogeneity parameter, inhomogeneity parameter and reinforcement parameter have significant influences on the wave characteristics. In addition, frequency equation is discussed in absence of inhomogeneity and initial stress. For the validation purpose, numerical results are also computed for a particular case.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Latha Madhuri Poonem ◽  
Rajitha Gurijala ◽  
Sindhuja Ala ◽  
Malla Reddy Perati

PurposeThe purpose of this paper is to investigate the effect of initial stress and heterogeneity on the propagation of torsional waves in dissipative medium. The problem consists of dry sand poroelastic half-space embedded between heterogeneous self-reinforced half-space and poroelastic medium. The frequency equation is derived in the framework of Biot's theory with some variants.Design/methodology/approachTorsional wave propagation in dry sand poroelastic half-space embedded between self-reinforced half-space and poroelastic medium. All the constituents here are assumed to be dissipative, heterogeneous and initial stressed.FindingsPhase velocity and attenuation are computed against wavenumber for various values of self-reinforcement parameter, inhomogeneity parameter and initial stress. Particular cases are discussed in absence of dissipation. The numerical results are presented graphically.Originality/valueInitial stress and heterogeneity effects on torsional waves in dry sand half-space between reinforced half-space and poroelastic medium are investigated. The frequency equation is derived, and which intern gives the phase velocity and attenuation coefficient for various values of initial stress, self-reinforcement parameter and heterogeneity parameter. From the numerical results, it is clear that as wavenumber varies phase velocity and attenuation are periodic in nature for all the cases. Particular cases are discussed in absence of dissipation. This kind of analysis can be extended to any elastic solid by taking magnetic, thermo and piezoelectric effects into account.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Parvez Alam ◽  
Suprava Jena ◽  
Irfan Anjum Badruddin ◽  
Tatagar Mohammad Yunus Khan ◽  
Sarfaraz Kamangar

Purpose This paper aims to study the attenuation and dispersion phenomena of shear waves in anelastic and elastic porous strips. Numerical investigations are performed for the phase and damped velocity profiles of the wave. For numerical computation purposes, water-saturated limestone and kerosene oil saturated sandstone for the first and second porous strips, respectively. Some other peculiarities have been observed and discussed. Design/methodology/approach Dispersion and attenuation characteristic of the shear wave propagations have been studied in an inhomogeneous poro-anelastic strip of finite thickness, which is clamped between an inhomogeneous poroelastic strip of finite thickness and an elastic half-space. Both the strips are initially stressed and the half-space is self-weighted. Analytical methods are used to calculate the interior deformations of the model with the involvement of special functions. The determination of the frequency equation, which includes the Bessel’s and Whittaker functions, has been obtained using the prescribed boundary conditions. Findings Impacts of attenuation coefficient, dissipation factor, inhomogeneities, initial stresses, Biot’s gravity, porosity and thickness ratio parameters on the velocity profile of the wave have been demonstrated through the graphical visuals. These parameters are playing an important role and working as a catalyst in affecting the propagation behaviour of the wave. Originality/value Inclusion of the concept of doubly layered initially stressed inhomogeneous porous structure of elastic and anelastic medium bedded over a self-weighted half-space medium brings a novelty to the existing literature related to the study of shear wave. It may be helpful to geologists, seismologists and structural engineers in the development of theoretical and practical studies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


2016 ◽  
Vol 13 (10) ◽  
pp. 6475-6481 ◽  
Author(s):  
Abo-el-nour N Abd-alla ◽  
N. F Hasbullah ◽  
Hala M Hossen

In this paper, we investigated analytically the frequency equations for shear horizontal wave propagation in a piezoelectric half space covered by a semiconductor film with initial stress effect. The semiconducting layer is influenced by initial stress and the interface between the piezoelectric substrate and the semiconductor layer. The governing equations of the mechanical displacement and electrical potential function under the effect of initial stress are obtained by solving the coupled electromechanical field equations of the piezoelectric half-space and the semiconductor film. Next, the numerical examples are presented to illustrate the influence of initial stress and electromagnetic boundary conditions for the different values of the film thickness and wave number. Furthermore, we studied in more details the effect of initial stress on the frequency equation for piezoelectric Barium Titanate (BaTiO3) and semiconductor silicon. The obtained results provide a predictable and theoretical basis for applications of piezoelectric and semiconductor composites to acoustic wave devices.


Sign in / Sign up

Export Citation Format

Share Document