Computer-aided diabetic retinopathy diagnostic model using optimal thresholding merged with neural network

2020 ◽  
Vol 13 (3) ◽  
pp. 283-310 ◽  
Author(s):  
Ambaji S. Jadhav ◽  
Pushpa B. Patil ◽  
Sunil Biradar

PurposeDiabetic retinopathy (DR) is a central root of blindness all over the world. Though DR is tough to diagnose in starting stages, and the detection procedure might be time-consuming even for qualified experts. Nowadays, intelligent disease detection techniques are extremely acceptable for progress analysis and recognition of various diseases. Therefore, a computer-aided diagnosis scheme based on intelligent learning approaches is intended to propose for diagnosing DR effectively using a benchmark dataset.Design/methodology/approachThe proposed DR diagnostic procedure involves four main steps: (1) image pre-processing, (2) blood vessel segmentation, (3) feature extraction, and (4) classification. Initially, the retinal fundus image is taken for pre-processing with the help of Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filter. In the next step, the blood vessel segmentation is carried out using a segmentation process with optimized gray-level thresholding. Once the blood vessels are extracted, feature extraction is done, using Local Binary Pattern (LBP), Texture Energy Measurement (TEM based on Laws of Texture Energy), and two entropy computations – Shanon's entropy, and Kapur's entropy. These collected features are subjected to a classifier called Neural Network (NN) with an optimized training algorithm. Both the gray-level thresholding and NN is enhanced by the Modified Levy Updated-Dragonfly Algorithm (MLU-DA), which operates to maximize the segmentation accuracy and to reduce the error difference between the predicted and actual outcomes of the NN. Finally, this classification error can correctly prove the efficiency of the proposed DR detection model.FindingsThe overall accuracy of the proposed MLU-DA was 16.6% superior to conventional classifiers, and the precision of the developed MLU-DA was 22% better than LM-NN, 16.6% better than PSO-NN, GWO-NN, and DA-NN. Finally, it is concluded that the implemented MLU-DA outperformed state-of-the-art algorithms in detecting DR.Originality/valueThis paper adopts the latest optimization algorithm called MLU-DA-Neural Network with optimal gray-level thresholding for detecting diabetic retinopathy disease. This is the first work utilizes MLU-DA-based Neural Network for computer-aided Diabetic Retinopathy diagnosis.

2021 ◽  
Vol 21 (01) ◽  
pp. 2150005
Author(s):  
ARUN T NAIR ◽  
K. MUTHUVEL

Nowadays, analysis on retinal image exists as one of the challenging area for study. Numerous retinal diseases could be recognized by analyzing the variations taking place in retina. However, the main disadvantage among those studies is that, they do not have higher recognition accuracy. The proposed framework includes four phases namely, (i) Blood Vessel Segmentation (ii) Feature Extraction (iii) Optimal Feature Selection and (iv) Classification. Initially, the input fundus image is subjected to blood vessel segmentation from which two binary thresholded images (one from High Pass Filter (HPF) and other from top-hat reconstruction) are acquired. These two images are differentiated and the areas that are common to both are said to be the major vessels and the left over regions are fused to form vessel sub-image. These vessel sub-images are classified with Gaussian Mixture Model (GMM) classifier and the resultant is summed up with the major vessels to form the segmented blood vessels. The segmented images are subjected to feature extraction process, where the features like proposed Local Binary Pattern (LBP), Gray-Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRM) are extracted. As the curse of dimensionality seems to be the greatest issue, it is important to select the appropriate features from the extracted one for classification. In this paper, a new improved optimization algorithm Moth Flame with New Distance Formulation (MF-NDF) is introduced for selecting the optimal features. Finally, the selected optimal features are subjected to Deep Convolutional Neural Network (DCNN) model for classification. Further, in order to make the precise diagnosis, the weights of DCNN are optimally tuned by the same optimization algorithm. The performance of the proposed algorithm will be compared against the conventional algorithms in terms of positive and negative measures.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bansode Balbhim Narhari ◽  
Bakwad Kamlakar Murlidhar ◽  
Ajij Dildar Sayyad ◽  
Ganesh Shahubha Sable

AbstractObjectivesThe focus of this paper is to introduce an automated early Diabetic Retinopathy (DR) detection scheme from colour fundus images through enhanced segmentation and classification strategies by analyzing blood vessels.MethodsThe occurrence of DR is increasing from the past years, impacting the eyes due to a sudden rise in the glucose level of blood. All over the world, half of the people who are under age 70 are severely suffered from diabetes. The patients who are affected by DR will lose their vision during the absence of early recognition of DR and appropriate treatment. To decrease the growth and occurrence of loss of vision, the early detection and timely treatment of DR are desirable. At present, deep learning models have presented better performance using retinal images for DR detection. In this work, the input retinal fundus images are initially subjected to pre-processing that undergoes contrast enhancement by Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filtering. Further, the optimized binary thresholding-based segmentation is done for blood vessel segmentation. For the segmented image, Tri-level Discrete Level Decomposition (Tri-DWT) is performed to decompose it. In the feature extraction phase, Local Binary Pattern (LBP), and Gray-Level Co-occurrence Matrices (GLCMs) are extracted. Next, the classification of images is done through the combination of two algorithms, one is Neural Network (NN), and the other Convolutional Neural Network (CNN). The extracted features are subjected to NN, and the tri-DWT-based segmented image is subjected to CNN. Both the segmentation and classification phases are enhanced by the improved meta-heuristic algorithm called Fitness Rate-based Crow Search Algorithm (FR-CSA), in which few parameters are optimized for attaining maximum detection accuracy.ResultsThe proposed DR detection model was implemented in MATLAB 2018a, and the analysis was done using three datasets, HRF, Messidor, and DIARETDB.ConclusionsThe developed FR-CSA algorithm has the best detection accuracy in diagnosing DR.


Sign in / Sign up

Export Citation Format

Share Document