Retinal Blood Vessel Segmentation and Identification of Glaucoma Using Convolutional Neural Network

2020 ◽  
Author(s):  
G Roopa Krishna Chandra ◽  
NV Kranthi ◽  
K Kavya
Author(s):  
Mali Mohammedhasan ◽  
Harun Uğuz

This paper proposes an incoming Deep Convolutional Neural Network (CNN) architecture for segmenting retinal blood vessels automatically from fundus images. Automatic segmentation performs a substantial role in computer-aided diagnosis of retinal diseases; it is of considerable significance as eye diseases as well as some other systemic diseases give rise to perceivable pathologic changes. Retinal blood vessel segmentation is challenging because of the excessive changes in the morphology of the vessels on a noisy background. Previous deep learning-based supervised methods suffer from the insufficient use of low-level features which is advantageous in semantic segmentation tasks. The proposed architecture makes use of both high-level features and low-level features to segment retinal blood vessels. The major contribution of the proposed architecture concentrates on two important factors; the first in its supplying of extremely modularized network architecture of aggregated residual connections which enable us to copy the learned layers from the shallower model and developing additional layers to identity mapping. The second is to improve the utilization of computing resources within the network. This is achieved through a skillfully crafted design that allows for increased depth and width of the network while maintaining the stability of its computational budget. Experimental results show the effectiveness of using aggregated residual connections in segmenting retinal vessels more accurately and clearly. Compared to the best existing methods, the proposed method outperformed other existing methods in different measures, comprised less false positives at fine vessels, and caressed more clear lines with sufficient details like the human annotator.


2021 ◽  
Vol 21 (01) ◽  
pp. 2150005
Author(s):  
ARUN T NAIR ◽  
K. MUTHUVEL

Nowadays, analysis on retinal image exists as one of the challenging area for study. Numerous retinal diseases could be recognized by analyzing the variations taking place in retina. However, the main disadvantage among those studies is that, they do not have higher recognition accuracy. The proposed framework includes four phases namely, (i) Blood Vessel Segmentation (ii) Feature Extraction (iii) Optimal Feature Selection and (iv) Classification. Initially, the input fundus image is subjected to blood vessel segmentation from which two binary thresholded images (one from High Pass Filter (HPF) and other from top-hat reconstruction) are acquired. These two images are differentiated and the areas that are common to both are said to be the major vessels and the left over regions are fused to form vessel sub-image. These vessel sub-images are classified with Gaussian Mixture Model (GMM) classifier and the resultant is summed up with the major vessels to form the segmented blood vessels. The segmented images are subjected to feature extraction process, where the features like proposed Local Binary Pattern (LBP), Gray-Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRM) are extracted. As the curse of dimensionality seems to be the greatest issue, it is important to select the appropriate features from the extracted one for classification. In this paper, a new improved optimization algorithm Moth Flame with New Distance Formulation (MF-NDF) is introduced for selecting the optimal features. Finally, the selected optimal features are subjected to Deep Convolutional Neural Network (DCNN) model for classification. Further, in order to make the precise diagnosis, the weights of DCNN are optimally tuned by the same optimization algorithm. The performance of the proposed algorithm will be compared against the conventional algorithms in terms of positive and negative measures.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 946 ◽  
Author(s):  
Pearl Mary Samuel ◽  
Thanikaiselvan Veeramalai

Retinal blood vessel segmentation influences a lot of blood vessel-related disorders such as diabetic retinopathy, hypertension, cardiovascular and cerebrovascular disorders, etc. It is found that vessel segmentation using a convolutional neural network (CNN) showed increased accuracy in feature extraction and vessel segmentation compared to the classical segmentation algorithms. CNN does not need any artificial handcrafted features to train the network. In the proposed deep neural network (DNN), a better pre-processing technique and multilevel/multiscale deep supervision (DS) layers are being incorporated for proper segmentation of retinal blood vessels. From the first four layers of the VGG-16 model, multilevel/multiscale deep supervision layers are formed by convolving vessel-specific Gaussian convolutions with two different scale initializations. These layers output the activation maps that are capable to learn vessel-specific features at multiple scales, levels, and depth. Furthermore, the receptive field of these maps is increased to obtain the symmetric feature maps that provide the refined blood vessel probability map. This map is completely free from the optic disc, boundaries, and non-vessel background. The segmented results are tested on Digital Retinal Images for Vessel Extraction (DRIVE), STructured Analysis of the Retina (STARE), High-Resolution Fundus (HRF), and real-world retinal datasets to evaluate its performance. This proposed model achieves better sensitivity values of 0.8282, 0.8979 and 0.8655 in DRIVE, STARE and HRF datasets with acceptable specificity and accuracy performance metrics.


Sign in / Sign up

Export Citation Format

Share Document