Analysis of influencing factors on transient temperature field of wet clutch friction plate used in marine gearbox

2018 ◽  
Vol 70 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Tengjiao Lin ◽  
Zi-ran Tan ◽  
Ze-yin He ◽  
Hong Cao ◽  
He-sheng Lv

Purpose This paper aims to introduce the moment of inertia of the driving and driven end of the clutch into the analysis of the transient temperature field of a friction plate and studied the influencing factors on that, especially to a marine gearbox. Design/methodology/approach A three-dimensional transient heat transfer analysis model of a wet clutch friction plate used in a marine gearbox is developed, and the transient characteristics of the temperature field during engagement are analyzed with taking account of the influence factors such as the sliding friction coefficient, engaging revolving speed, moment of inertia and applied engagement pressure. Findings The paper found out that the hot spot appears on the surface of the friction plate, taking account of the effect of radial slots and spiral groove. To avoid damage to the friction plate as a result of overheating, the appropriate sliding friction coefficient, lower engaging revolving speed and reasonable selection of applied engagement pressure curve can ensure a favorable heating situation of the friction plate. The reasonable structural design for the clutch with a bigger moment of inertia of driving end and smaller moment of inertia of driven end can reduce the engaging time effectively and decrease the peak temperature of the friction plate. Originality/value This paper fulfils a method to study the transient temperature field of a wet clutch friction plate, especially used in a marine gearbox.

2021 ◽  
Author(s):  
Ninh The Nguyen ◽  
John H Chujutalli

Abstract FEA-based Gaussian density heat source models were developed to study the effect of convective and radiative heat sinks on the transient temperature field predicted by the available approximate analytical solution of the purely conduction-based Goldak’s heat source. A new complex 3D Gaussian heat source model, incorporating all three modes of heat transfer, i.e., conduction, convection and radiation, has been developed as an extension of the Goldak heat source. Its approximate transient analytical solutions for this 3-D moving heat source were derived and numerically benchmarked with the available measured temperature & weld pool geometry data by Matlab programming with ~5 to 6 times faster than FEA-based simulation. The new complex 3D Gaussian heat source model and its approximate solution could significantly reduce the computing time in generating the transient temperature field and become an efficient alternative to extensive FEA-based simulations of heating sequences, where virtual optimisation of a melting heat source (i.e. used in welding, heating, cutting or other advanced manufacturing processes) is desirable for characterisation of material behaviour in microstructure evolution, melted pool, microhardness, residual stress and distortions.


2012 ◽  
Vol 538-541 ◽  
pp. 1837-1842 ◽  
Author(s):  
Long Zhi Zhao ◽  
Zi Wang ◽  
Xin Yan Jiang ◽  
Jian Zhang ◽  
Ming Juan Zhao

According to the characteristics of laser melt injection, a numerical model for a simplified 3D transient temperature field in molten pool was established using FLUENT software in this paper. In the model, many factors were considered such as liquid metal turbulence, latent heat of phase transformation and material thermo physical properties depending on temperature. The results show that the model can be developed well by FLUENT software. And the results also show that the driving force of the liquid metal flow mechanism.


Author(s):  
Yanzhong Wang ◽  
Peng Liu

Conical friction surface is a novel configuration for friction plate in transmission. Numerical FEA models for transient heat transfer and distribution of conically grooved friction plate have been established to investigate the thermal behavior of the conical surface with different configurations. The finite element method is used to obtain the numerical solution, the temperature test data of conical surface are obtained by the friction test rig. In order to study and compare the temperature behavior of conically grooved friction plate, several three-dimensional transient temperature models are established. The heat generated on the friction interface during the continuous sliding process is calculated. Two different pressure conditions were defined to evaluate the influence of different load conditions on temperature rise and the effects of conical configuration parameters on surface temperature distribution are investigated. The results show that the radial temperature gradient on conical friction surface is obvious. The uniform pressure condition could be used when evaluating the temperature rise of conically grooved friction plate. The increase of the cone height could improve the radial temperature gradient of the conically grooved friction plate.


2014 ◽  
Vol 551 ◽  
pp. 399-406
Author(s):  
Jie Li ◽  
Xiao Yan Wang ◽  
Qi Jin ◽  
Jun Zhi Luo ◽  
Liang Hai Yi

Because of overheat and over wear, the distortion and invalidation will be produced easily in combining friction discs of wet clutch of heavy vehicle transmission system. So the paper studies the sliding friction force of a pair of steel and friction disc, calculates the heat flow density, obtains the heat exchange function with axial symmetry, and establishes the finite element model of temperature field. And then the transient heat field simulation is analyzed, and temperature field distribution curves of combining pairs are obtained. Thus the connection is found between time and temperature along radial and axial direction, and temperature field characteristics are obtained with touch press, relative speed, and sliding time.


Sign in / Sign up

Export Citation Format

Share Document