Deep learning-based container throughput forecasting: a triple bottom line approach

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sonali Shankar ◽  
Sushil Punia ◽  
P. Vigneswara Ilavarasan

PurposeContainer throughput forecasting plays a pivotal role in strategic, tactical and operational level decision-making. The determination and analysis of the influencing factors of container throughput are observed to enhance the predicting accuracy. Therefore, for effective port planning and management, this study employs a deep learning-based method to forecast the container throughput while considering the influence of economic, environmental and social factors on throughput forecasting.Design/methodology/approachA novel multivariate container throughput forecasting method is proposed using long short-term memory network (LSTM). The external factors influencing container throughput, delineated using triple bottom line, are considered as an input to the forecasting method. The principal component analysis (PCA) is employed to reduce the redundancy of the input variables. The container throughput data of the Port of Los Angeles (PLA) is considered for empirical analysis. The forecasting accuracy of the proposed method is measured via an error matrix. The accuracy of the results is further substantiated by the Diebold-Mariano statistical test.FindingsThe result of the proposed method is benchmarked with vector autoregression (VAR), autoregressive integrated moving average (ARIMAX) and LSTM. It is observed that the proposed method outperforms other counterpart methods. Though PCA was not an integral part of the forecasting process, it facilitated the prediction by means of “less data, more accuracy.”Originality/valueA novel deep learning-based forecasting method is proposed to predict container throughput using a hybridized autoregressive integrated moving average with external factors model and long short-term memory network (ARIMAX-LSTM).

2019 ◽  
Vol 120 (3) ◽  
pp. 425-441 ◽  
Author(s):  
Sonali Shankar ◽  
P. Vigneswara Ilavarasan ◽  
Sushil Punia ◽  
Surya Prakash Singh

Purpose Better forecasting always leads to better management and planning of the operations. The container throughput data are complex and often have multiple seasonality. This makes it difficult to forecast accurately. The purpose of this paper is to forecast container throughput using deep learning methods and benchmark its performance over other traditional time-series methods. Design/methodology/approach In this study, long short-term memory (LSTM) networks are implemented to forecast container throughput. The container throughput data of the Port of Singapore are used for empirical analysis. The forecasting performance of the LSTM model is compared with seven different time-series forecasting methods, namely, autoregressive integrated moving average (ARIMA), simple exponential smoothing, Holt–Winter’s, error-trend-seasonality, trigonometric regressors (TBATS), neural network (NN) and ARIMA + NN. The relative error matrix is used to analyze the performance of the different models with respect to bias, accuracy and uncertainty. Findings The results showed that LSTM outperformed all other benchmark methods. From a statistical perspective, the Diebold–Mariano test is also conducted to further substantiate better forecasting performance of LSTM over other counterpart methods. Originality/value The proposed study is a contribution to the literature on the container throughput forecasting and adds value to the supply chain theory of forecasting. Second, this study explained the architecture of the deep-learning-based LSTM method and discussed in detail the steps to implement it.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1178
Author(s):  
Chin-Wen Liao ◽  
I-Chi Wang ◽  
Kuo-Ping Lin ◽  
Yu-Ju Lin

To protect the environment and achieve the Sustainable Development Goals (SDGs), reducing greenhouse gas emissions has been actively promoted by global governments. Thus, clean energy, such as wind power, has become a very important topic among global governments. However, accurately forecasting wind power output is not a straightforward task. The present study attempts to develop a fuzzy seasonal long short-term memory network (FSLSTM) that includes the fuzzy decomposition method and long short-term memory network (LSTM) to forecast a monthly wind power output dataset. LSTM technology has been successfully applied to forecasting problems, especially time series problems. This study first adopts the fuzzy seasonal index into the fuzzy LSTM model, which effectively extends the traditional LSTM technology. The FSLSTM, LSTM, autoregressive integrated moving average (ARIMA), generalized regression neural network (GRNN), back propagation neural network (BPNN), least square support vector regression (LSSVR), and seasonal autoregressive integrated moving average (SARIMA) models are then used to forecast monthly wind power output datasets in Taiwan. The empirical results indicate that FSLSTM can obtain better performance in terms of forecasting accuracy than the other methods. Therefore, FSLSTM can efficiently provide credible prediction values for Taiwan’s wind power output datasets.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3433 ◽  
Author(s):  
Seon Kim ◽  
Gyul Lee ◽  
Gu-Young Kwon ◽  
Do-In Kim ◽  
Yong-June Shin

Load forecasting is a key issue for efficient real-time energy management in smart grids. To control the load using demand side management accurately, load forecasting should be predicted in the short term. With the advent of advanced measuring infrastructure, it is possible to measure energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale energy groups, such as individual buildings. This paper presents applications of deep learning using feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed into a weekly load profile and then decomposed into intrinsic mode functions by variational mode decomposition to capture periodic features. Then, a long short-term memory network model is trained by three-dimensional input data with three-step regularization. Finally, the prediction results of all intrinsic mode functions are combined with advanced measuring infrastructure measured in the previous steps to determine an aggregated output for load forecasting. The results are validated by applications to real-world data from smart buildings, and the performance of the proposed approach is assessed by comparing the predicted results with those of conventional methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory network-based feature decomposition.


Sign in / Sign up

Export Citation Format

Share Document