Advanced cuttlefish optimizer-random decision forest (ACORDF) based design of fractional order PID controller for higher-order time-delay system

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

Purpose The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal design known as advanced cuttlefish optimizer and random decision forest that is combined performance of random decision forest algorithm (RDFA) and advanced cuttlefish optimizer (ACFO). Design/methodology/approach The proposed ACFO uses the concept of crossover and mutation operator depend on position upgrading to enhance its search behavior, calculational speed as well as convergence profile at basic cuttlefish optimizer. Findings Fractional order proportional-integrator-derivative (FOPID) controller, apart from as tuning parameters (kp, ki and kd) it consists of two extra tuning parameters λ and µ. In established technology, the increase of FOPID controller is adjusted to reach needed responses that demonstrated using RDFA theory as well as RDF weight matrices is probable to the help of the ACFO method. The uniqueness of the established method is to decrease the failure of the FOPID controller at greater order time delay method with the help of controller maximize restrictions. The objective of the established method is selected to consider parameters set point as well as achieved parameters of time-delay system. Originality/value In the established technique used to evade large order delays as well as reliability restrictions such as small excesses, time resolution, as well as fixed condition defect. These methods is implemented at MATLAB/Simulink platform as well as outcomes compared to various existing methods such as Ziegler-Nichols fit, curve fit, Wang method, regression and invasive weed optimization and linear-quadratic regression method.

2014 ◽  
Vol 716-717 ◽  
pp. 1614-1619
Author(s):  
Rui Hao Xin ◽  
Chun Yang Wang ◽  
Xue Lian Liu ◽  
Ming Qiu Li ◽  
Duan Yuan Bai

In this paper, a new control method for large time delay system is proposed. Firstly, the decreasing time delay controller is used to remodel large delay time plant into small delay time plant. Then, a fractional robust proportional-integral controller (FOPI) is designed, using the phase margin and cut-off frequency at a specified point in the Bode plot of flat robust conditions, to guarantee the desired control performance and the robustness of the high order system to the gain order system. For comparison between the fractional order proportional integral controller and the traditional integer order PID (IOPID) controller, the IOPID controller is also designed following the same proposed tuning specifications. The simulation results indicates that the both designed controllers work efficiently. Furthermore, the FOPI controller makes the large time-delay system get better control effect, the system has high robustness, adaptive ability and anti-jamming ability.


Sign in / Sign up

Export Citation Format

Share Document