Lifecycle Exchange for Asset Data (LEAD)

2019 ◽  
Vol 17 (5) ◽  
pp. 385-411
Author(s):  
Ahmed Alnaggar ◽  
Michael Pitt

Purpose The purpose of this study is to outline the problems associated with asset information management using the Construction Operations Building Information Exchange (COBie) standard and to analyse the causes of industry failure to successfully adopt the standard. Based on this analysis, the paper will propose a process model, namely, Lifecycle Exchange of Asset Data (LEAD) to manage asset dataflow between all building stakeholders from design to construction and ultimately to the facility management team. This model aims to help the construction supply chain to produce complete and high-quality asset data that supports the operation phase of the built environment. Design/methodology/approach A review of relevant studies provided a theoretical background for this study. The authors then collected and analysed COBie data from five live construction projects using building information modelling (BIM) projects from different design and construction companies. The process model is based on an industry placement within Bouygues UK construction company, which was a Tier 1 building contractor in London in the period from December 2016 to December 2018. The researcher used an inductive approach observing current practises in two construction projects to produce “LEAD” model. Then a focus group was conducted with industry experts to discuss and refine the process model. Findings Analysis of literature and data collected in the course of this study revealed that although COBie is a BIM Level 2 standard in the UK, there is currently a low success rate in producing complete and accurate COBie data in the UK construction industry. This low rate is because of COBie’s rigid data syntax/structure, complexity and ambiguity of its data exchange process, which suggests that COBie may not be the future of the industry. Based on these findings, the study proposed a process model, namely, “LEAD,” to improve COBie output and also to be used with project-specific information requirements. Practical implications To the best of the authors’ knowledge, this paper is one of the first to focus solely on asset data exchange process using COBie standard and highlights the problems the industry faces in this remit. The study is based on industry placement for two years, so the analysis is based on actual and current industry problems. Current industry practices also informed the “LEAD” model, and the model provides a step-by-step guidance in producing and exchanging BIM asset data in all stages of the building lifecycle. Originality/value This paper provides a detailed analysis of the most common problems associated with COBie as an asset data exchange standard. Understanding these problems is of high value for industry practitioners to avoid them in projects. The paper also proposed a novel process model that can be used either to improve COBie quality or can be used with any project-specific data requirements.

2019 ◽  
Vol 17 (6) ◽  
pp. 1304-1322
Author(s):  
Sandra Matarneh ◽  
Mark Danso-Amoako ◽  
Salam Al-Bizri ◽  
Mark Gaterell ◽  
Rana Matarneh

Purpose The purpose of this study is to address challenges in the current information exchange process between building information modelling (BIM) and facilities management (FM) systems and to propose a workable solution. This study’s objective is to identify the information exchange requirements and to develop methods for seamless information flow between building information models and FM systems. Design/methodology/approach Data collection and analysis was based on an extensive literature review of similar studies followed by a questionnaire survey with a total of 112 participants and 2 focus groups with a total of 12 participants to validate the conceptual framework. The outputs of the survey analysis formed the background of the proposed framework to streamline information exchange process between building information models and FM systems. Findings The study findings form a foundation for enabling the integration of various data sources including building information models. Such integrated platforms will enable automated information exchange between the various data sources and FM systems. The study also provides key information requirements sources to complement the existing construction operations building information exchange information and to support standardization for information exchange process. Originality/value The contribution of this study is the identification of information exchange requirements and sources to enable seamless information flow between BIM and FM systems. The study findings will also lay the basis for research studies using the developed framework context to enable the identification of specific data outputs for FM systems inputs.


Facilities ◽  
2019 ◽  
Vol 38 (5/6) ◽  
pp. 378-394
Author(s):  
Sandra T. Matarneh ◽  
Mark Danso-Amoako ◽  
Salam Al-Bizri ◽  
Mark Gaterell ◽  
Rana T. Matarneh

Purpose This paper aims to identify a generic set of information requirements for facilities management (FM) systems, which should be included in BIM as-built models for efficient information exchange between BIM and FM systems, and to propose a process to identify, verify and collect the required information for use in FM systems during the project’s lifecycle. Design/methodology/approach Both qualitative and quantitative approaches were applied at different stages of the study’s sequential design. The collection and analysis of qualitative data was based on an extensive literature review of similar studies, standards, best practices and case study documentation. This was followed by a questionnaire survey of 191 FM practitioners in the UK. This formed the background of the third stage, which was the development of the information management process to streamline information exchange between building information models and FM systems. Findings The study identifies a generic list of information requirements of building information models to support FM systems. In addition, the study presents an information management process that generates a specific database for FM systems using an open data format. Originality/value The existing literature focuses on specific building types (educational buildings) or specific information requirements related to particular systems (mechanical systems). The existing standards, guidelines and best practices focus on the information requirements to support the operations and maintenance (O&M) phase in general. This study is different from previous studies because it develops a set of specific information requirements for building information models to support FM systems. FM organisations and owners can use the proposed list of information requirements as a base to generate specific data output for their FM systems’ input, to decrease the redundant activity of manual data entry and focus their efforts on key activities.


Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 118 ◽  
Author(s):  
Julia Ratajczak ◽  
Michael Riedl ◽  
Dominik Matt

The information and communication technologies (ICTs) utilization ratio in the construction industry is relatively low. This industry is characterized by low productivity, time and cost overruns in projectsdue to inefficient management processes, poor communication and low process automation. To improve construction performance, a BIM-based (BIM - (Building Information Modelling) and augmented reality (AR) application (referred to as the AR4C: Augmented Reality for Construction) is proposed, which integrates a location-based management system (LBMS). The application provides context-specific information on construction projects and tasks, as well as key performance indicators on the progress and performance of construction tasks. The construction projects are superimposed onto the real world, while a site manager is walking through the construction site. This paper describes the most important methods and technologies, which are needed to develop the AR4C application. In particular, the data exchange between BIM software and the Unity environment is discussed, as well as the integration of LBMS into BIM software and the AR4C application. Finally, the implemented and planned functionalities are argued. The AR4C application prototype was tested in a laboratory environment and produced positive feedback. Since the application addresses construction sites, a validation in semi-real scenarios with end users is recommended.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


Facilities ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vishal Kumar ◽  
Evelyn Ai Lin Teo

Purpose Until now, the usage and usability factors of Construction Operation Building information exchange (COBie) datasheet have remained largely overlooked. This oversight may be the potential factor in the lower adoption rates as well as the effective usage of COBie datasheet in the architecture, engineering and construction-facilities management industry. The purpose of this study is to investigate the benefits and key issues associated with COBie datasheet handling and identify the key technological solutions, which can help in mitigating the identified issues. Design/methodology/approach A literature review was conducted to identify the key benefits of using COBie and issues, which are associated with COBie datasheet handling. This paper has also designed a questionnaire based on a literature review and surveyed professionals who are well versed with handling COBie datasheet. Using responses, the issues are analyzed and discussed using non-parametric statistical analysis. Findings A total of 9 key benefits and 24 key issues categorized under three groups of usability issues, technical issues and organizational/other issues were identified. The results from the survey agree with all the key issues associated with COBie datasheet handling (with 86 responses). This research also proposes key ideas, that can help in mitigating these issues. Originality/value There is a paucity in published literature, which discusses in detail about the various issues associated with COBie datasheet handling. This research study aims to address this gap by identifying key issues by looking at the entire COBie data-capturing process holistically. Finding from this study can help professionals to understand these issues and develop appropriate technological solutions, which can make COBie data capturing and understanding easier. The findings could also assist in increasing the adoption rate of COBie, which could be achieved through mitigation of identified issues.


2019 ◽  
Vol 19 (3) ◽  
pp. 321-342 ◽  
Author(s):  
Timothy Oluwatosin Olawumi ◽  
Daniel W.M. Chan

Purpose The increasing urbanization of the built environment has bolstered the need to promote green Building Information Modeling (BIM) initiative in new construction projects and the rehabilitation of old premises. This study aims to explore and examine the key benefits of the implementation of BIM and sustainability practices in the built environment. Design/methodology/approach The study gathered the worldwide perceptions of 220 survey participants from 21 countries which were analyzed using descriptive and inferential analytical methods. The identified individual benefits of green BIM were further categorized into their underlying clusters using factor analysis. Findings The key benefits are related to enhancing project efficiency and productivity, ensuring real-time sustainable design and multi-design alternatives, facilitating the selection of sustainable materials and components, together with reducing material wastage and project’s environmental impact, among others. The study analyzed and compared the perceptions of the diverse groups of the respondents as well. Practical implications Effective blueprints and insightful recommendations for enhancing the various stakeholders’ capacities to implement green BIM in their construction projects were put forward to achieve the aim of sustainable smart urbanization. Originality/value The study identified salient benefits of the adoption of BIM and sustainability practices. The proper integration of these concepts and the execution of the recommended useful strategies by construction stakeholders, policymakers and local authorities will enable the built environment to reap the gains of its implementation.


Author(s):  
Habeeb Kusimo ◽  
Lukumon Oyedele ◽  
Olugbenga Akinade ◽  
Ahmed Oyedele ◽  
Sofiat Abioye ◽  
...  

Purpose The purpose of this paper is to identify challenges faced in resource management in the UK construction industry and to propose some solutions to these problems. Design/methodology/approach Based on a qualitative research methodology, 14 experts from the UK construction industry were chosen to be participants in the study. The participants were equally divided into two focus groups to discuss resource management using five projects as case studies. Thematic analysis of the discussion reveals seven key factors that affect resource management. Findings The results show that most of the problems identified are due to poor data management processes and the practice of having data in silos. Overcoming this challenge requires the adoption of big data approaches for resource management to allow the integration of large and different forms of data. Originality/value This study seeks to bring to the fore challenges faced in resource management by the UK construction industry and to outline some solutions to address them.


2019 ◽  
Vol 26 (4) ◽  
pp. 648-667 ◽  
Author(s):  
Øystein Mejlænder-Larsen

Purpose Traditionally, progress in detail engineering in construction projects is reported based on estimates and manual input from the disciplines in the engineering team. Reporting progress on activities in an engineering schedule manually, based on subjective evaluations, is time consuming and can reduce accuracy, especially in larger and multi-disciplinary projects. How can progress in detail engineering be reported using BIM and connected to activities in an engineering schedule? The purpose of this paper is to introduce a three-step process for reporting progress in detail engineering using building information modeling (BIM) to minimize manual reporting and increase quality and accuracy. Design/methodology/approach The findings of this paper are based on the studies of experiences from the execution of projects in the oil and gas industry. Data are collected from an engineering, procurement and construction (EPC) contractor and two engineering contractors using case study research. Findings In the first step, control objects in building information models are introduced. Statuses are added to control objects to fulfill defined quality levels related to milestones. In the second step, the control objects with statuses are used to report visual progress and aggregated in an overall progress report. In the third step, overall progress from building information models are connected to activities in an engineering schedule. Originality/value Existing research works related to monitoring and reporting progress using a BIM focus on construction and not on detail engineering. The research demonstrates that actual progress in detail engineering can be visualized and reported through the use of BIM and extracted to activities in an engineering schedule through a three-step process.


2019 ◽  
Vol 17 (3) ◽  
pp. 301-316 ◽  
Author(s):  
Marjan Sadeghi ◽  
Jonathan Weston Elliott ◽  
Nick Porro ◽  
Kelly Strong

PurposeThis paper aims to represent the results of a case study to establish a building information model (BIM)-enabled workflow to capture and retrieve facility information to deliver integrated handover deliverables.Design/methodology/approachThe Building Handover Information Model (BHIM) framework proposed herein is contextualized given the Construction Operation Information Exchange (COBie) and the level of development schema. The process uses Autodesk Revit as the primary BIM-authoring tool and Dynamo as an add-in for extending Revit’s parametric functionality, BHIM validation, information retrieval and documentation in generating operation and maintenance (O&M) deliverables in the end-user requested format.FindingsGiven the criticality of semantics for model elements in the BHIM and for appropriate interoperability in BIM collaboration, each discipline should establish model development and exchange protocols that define the elements, geometrical and non-geometrical information requirements and acceptable software applications early in the design phase. In this case study, five information categories (location, specifications, warranty, maintenance instructions and Construction Specifications Institute MasterFormat division) were identified as critical for model elements in the BHIM for handover purposes.Originality/valueDesign- and construction-purposed BIM is a standard platform in collaborative architecture, engineering and construction practice, and the models are available for many recently constructed facilities. However, interoperability issues drastically restrict implementation of these models in building information handover and O&M. This study provides essential input regarding BIM exchange protocols and collaborative BIM libraries for handover purposes in collaborative BIM development.


2020 ◽  
Vol 24 (3) ◽  
pp. 517-532
Author(s):  
Rachel Parker-Strak ◽  
Liz Barnes ◽  
Rachel Studd ◽  
Stephen Doyle

PurposeThis research critically investigates product development in the context of fast fashion online retailers who are developing “own label” fashion clothing. With a focus upon inputs, outputs, planning and management in order to comprehensively map the interplay of people, processes and the procedures of the product development process adopted.Design/methodology/approachQualitative research method was employed. Face-to-face semi structured in depth interviews were conducted with key informants from market leading fast fashion online retailers in the UK.FindingsThe major findings of this research demonstrate the disruptions in the product development process in contemporary and challenging fashion retailing and a new “circular process” model more appropriate and specific to online fast fashion businesses is presented.Research limitations/implicationsThe research has implications for the emerging body of theory relating to fashion product development. The research is limited to UK online fashion retailers, although their operations are global.Practical implicationsThe findings from this study may be useful for apparel product development for retailers considering an online and fast fashion business model.Originality/valueThe emergent process model in this study may be used as a baseline for further studies to compare product development processes.


Sign in / Sign up

Export Citation Format

Share Document