scholarly journals A three-step process for reporting progress in detail engineering using BIM, based on experiences from oil and gas projects

2019 ◽  
Vol 26 (4) ◽  
pp. 648-667 ◽  
Author(s):  
Øystein Mejlænder-Larsen

Purpose Traditionally, progress in detail engineering in construction projects is reported based on estimates and manual input from the disciplines in the engineering team. Reporting progress on activities in an engineering schedule manually, based on subjective evaluations, is time consuming and can reduce accuracy, especially in larger and multi-disciplinary projects. How can progress in detail engineering be reported using BIM and connected to activities in an engineering schedule? The purpose of this paper is to introduce a three-step process for reporting progress in detail engineering using building information modeling (BIM) to minimize manual reporting and increase quality and accuracy. Design/methodology/approach The findings of this paper are based on the studies of experiences from the execution of projects in the oil and gas industry. Data are collected from an engineering, procurement and construction (EPC) contractor and two engineering contractors using case study research. Findings In the first step, control objects in building information models are introduced. Statuses are added to control objects to fulfill defined quality levels related to milestones. In the second step, the control objects with statuses are used to report visual progress and aggregated in an overall progress report. In the third step, overall progress from building information models are connected to activities in an engineering schedule. Originality/value Existing research works related to monitoring and reporting progress using a BIM focus on construction and not on detail engineering. The research demonstrates that actual progress in detail engineering can be visualized and reported through the use of BIM and extracted to activities in an engineering schedule through a three-step process.

2017 ◽  
Vol 23 (8) ◽  
pp. 1100-1108 ◽  
Author(s):  
Daniel Luiz de Mattos NASCIMENTO ◽  
Elisa Dominguez SOTELINO ◽  
Thiago Pires Santoloni LARA ◽  
Rodrigo Goyannes Gusmão CAIADO ◽  
Paulo IVSON

One of the main problems the construction industry faces is the high cost and slow execution time due to inadequate planning, which results in poor use of human resources. A common solution for reducing time and costs is the adoption of prefabricated components (prefabs). This paper proposes a novel methodology for interdisciplinary man­agement of construction projects by integrating Building Information Modeling (BIM) and Lean Thinking to improve the production planning and control of pipe-rack modules in an industrial facility. The article first presents a literature review to assess the key synergies between BIM and Lean Thinking. These led to the development of a new integrated work methodology named Digital Obeya Room. This model focuses on the required workflows, the analysis of collected data, and the visual management of construction planning and control. A real-world empirical study in the Oil and Gas industry evaluated how the newly devised practices could improve prefabrication and preassembly planning. The pro­posed methodology was capable of reducing the welding-time in 8.7% related on global prefabrication average in con­struction projects from Fails Management Institute (FMI) prefabrication report survey 2017.


2019 ◽  
Vol 18 (4) ◽  
pp. 923-940
Author(s):  
Abdul Rahman Ahsan Usmani ◽  
Abdalrahman Elshafey ◽  
Masoud Gheisari ◽  
Changsaar Chai ◽  
Eeydzah Binti Aminudin ◽  
...  

Purpose Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia. Design/methodology/approach A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling. Findings This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia. Originality/value Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Vestnik MGSU ◽  
2020 ◽  
pp. 867-906 ◽  
Author(s):  
Vladimir A. Volkodav ◽  
Ivan A. Volkodav

Abstract Introduction. Various building information classification systems are used internationally; their critical analysis makes it possible to highlight basic requirements applicable to the Russian classifier and substantiate its structure and composition. Materials and methods. Modern international building information classification systems, such as OmniClass (USA), Uniclass 2015 (UK), CCS (Denmark), and CoClass (Sweden), are considered in the article. Their structure, composition, methodological fundamentals are analyzed. In addition to international classification systems, Russian construction information classifiers are analyzed. Results. The structure of a building information classifier has been developed and tailored to the needs of BIM (building information modeling) and national regulatory and technical requirements. The classifier’s structure complies with the one recommended by ISO 12006-2:2015. Its composition has regard to the requirements that apply to the aggregation and unification of Russian classifiers, and it also benefits from the classifiers developed for and used by the construction industry. The proposed building information classifier has four basic categories and 21 basic classes. Conclusions. The proposed structure and composition of a building information classifier represent a unified and universal tool for communicating building information or presenting it in the standardized format in the consolidated information space designated for information models needed to manage life cycles of major construction projects.


2019 ◽  
Vol 19 (3) ◽  
pp. 321-342 ◽  
Author(s):  
Timothy Oluwatosin Olawumi ◽  
Daniel W.M. Chan

Purpose The increasing urbanization of the built environment has bolstered the need to promote green Building Information Modeling (BIM) initiative in new construction projects and the rehabilitation of old premises. This study aims to explore and examine the key benefits of the implementation of BIM and sustainability practices in the built environment. Design/methodology/approach The study gathered the worldwide perceptions of 220 survey participants from 21 countries which were analyzed using descriptive and inferential analytical methods. The identified individual benefits of green BIM were further categorized into their underlying clusters using factor analysis. Findings The key benefits are related to enhancing project efficiency and productivity, ensuring real-time sustainable design and multi-design alternatives, facilitating the selection of sustainable materials and components, together with reducing material wastage and project’s environmental impact, among others. The study analyzed and compared the perceptions of the diverse groups of the respondents as well. Practical implications Effective blueprints and insightful recommendations for enhancing the various stakeholders’ capacities to implement green BIM in their construction projects were put forward to achieve the aim of sustainable smart urbanization. Originality/value The study identified salient benefits of the adoption of BIM and sustainability practices. The proper integration of these concepts and the execution of the recommended useful strategies by construction stakeholders, policymakers and local authorities will enable the built environment to reap the gains of its implementation.


2019 ◽  
Vol 17 (6) ◽  
pp. 1304-1322
Author(s):  
Sandra Matarneh ◽  
Mark Danso-Amoako ◽  
Salam Al-Bizri ◽  
Mark Gaterell ◽  
Rana Matarneh

Purpose The purpose of this study is to address challenges in the current information exchange process between building information modelling (BIM) and facilities management (FM) systems and to propose a workable solution. This study’s objective is to identify the information exchange requirements and to develop methods for seamless information flow between building information models and FM systems. Design/methodology/approach Data collection and analysis was based on an extensive literature review of similar studies followed by a questionnaire survey with a total of 112 participants and 2 focus groups with a total of 12 participants to validate the conceptual framework. The outputs of the survey analysis formed the background of the proposed framework to streamline information exchange process between building information models and FM systems. Findings The study findings form a foundation for enabling the integration of various data sources including building information models. Such integrated platforms will enable automated information exchange between the various data sources and FM systems. The study also provides key information requirements sources to complement the existing construction operations building information exchange information and to support standardization for information exchange process. Originality/value The contribution of this study is the identification of information exchange requirements and sources to enable seamless information flow between BIM and FM systems. The study findings will also lay the basis for research studies using the developed framework context to enable the identification of specific data outputs for FM systems inputs.


2019 ◽  
Vol 19 (2) ◽  
pp. 280-294 ◽  
Author(s):  
Ziwei Wang ◽  
Ehsan Rezazadeh Azar

PurposeProject schedules have a vital role in the effective management of time, cost, scope and resources in construction projects, and creating schedules requires schedulers with construction knowledge and experience. The increase in the complexity of building projects and the emergence of building information modeling (BIM) in the architecture, engineering and construction industry have encouraged researchers to explore BIM capabilities for automated schedule generation. The scope and capabilities of the developed systems, however, are limited and the link between design and scheduling is still underdeveloped. This paper aims to investigate methods to develop a BIM-based framework to automatically generate schedules for concrete-framed buildings.Design/methodology/approachThis system first extracts the required data from the building information model, including elements’ dimensions, quantities, spatial information, materials and other related attributes. It then applies construction rules, prior knowledge and production rate data to create project work-packages, calculate their durations and determine their relationships. Finally, it organizes these results into a schedule using project management software.FindingsThis system provides an automated and easy-to-use approach to generate schedules for concrete-framed buildings that are modeled in a BIM platform. It provides two schedules for each project, both a sequential and an overlapped solution, which the schedulers can modify into a practical schedule based on conditions and available resources.Originality/valueThis research project presents an innovative approach to use BIM-based attributes of structural elements to develop list of work-packages and estimate their durations, and then it uses a combination of rule-based and case-based reasoning to generate the schedules.


Author(s):  
Ageliki Valavanoglou ◽  
Detlef Heck

Delay and Disruption is a common occurrence in construction projects. The challenges of forensic schedule analysis and the evaluation of the extent of project delay increase with the degree of complexity of a project. The occurrence of multiple concurrent delays, secondary effects and the cumulative impact of delay and disruption events can render the establishment of entitlement to extension of time and reimbursement a difficult task. In order for the claiming party to receive compensation for project delay and disruption, causation, liability and quantum have to be demonstrated and proven. Advances in technology have made a shift from conventional delay analysis methods towards delay and disruption analysis supported by Building Information Models possible. Research and application of Building Information Models has increased in recent years, exploring information coordination on multiple dimensions. Linking the fourth dimension of time to a 3D model enables the user to visualize a representation of the construction process. The application of 4D simulation in forensic schedule analysis is a great tool for the visualization of delay events and their effects on the project schedule and the construction process. Although 4D Building Information Models are able to assist forensic schedule analysis, the identification of the cause and effect relationship of delay events of complex construction works, requires an expert who is not only familiar with the software tools but has also experience in delay analysis and is able to clearly determine the accuracy of the produced data. 4D Building Information Models can simulate a high level of project performance, producing great quantities of data. The role of the delay analyst is to identify the relevant facts from the great quantities of data simulated in the 4D model, in order to support his findings of entitlement, causation and resulting damages. The purpose of this paper is to investigate the use of 4D Building Information Modelling in delay and disruption claims and outline the expertise required to perform the forensic schedule analysis.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mukhtar A Kassem ◽  
Muhamad Azry Khoiry ◽  
Noraini Hamzah

PurposeThe oil and gas construction projects are affected negatively by the drop in oil price in recent years. Thus, most engineering, procurement and construction (EPC) companies are opting to optimize the project mainly to mitigate the source of risks in construction to achieve the project expectation. Risk factors cause a threat to the project objectives regarding time, cost and quality. It is additionally a vital component in deviating from the client's expectation of productivity, safety and standards. This research aims to investigate the causes of risk in the oil and gas construction projects in Yemen.Design/methodology/approachA comprehensive literature review from various sources including books, conference proceedings, the Internet project management journals and oil and gas industry journals was conducted to achieve the objectives of this study. This initial work was predicated strictly on a literature review and the judgments of experts to develop the risk factor framework for the oil and gas construction projects in Yemen.FindingsThe authors found a few studies related to risk factors in oil and gas construction projects and shared a similar view about general construction projects. However, only a fraction of the factors accepted have included the variances of other studies on a regional basis or specific countries, such as the Yemen situation, due to the differences between the general construction industry and oil and gas industry. Moreover, the factors of these attributes were still accepted due to their applicability to the oil and gas industry, and no significant variances existed between countries. Research has indicated that 51 critical factors cause risks in the oil and gas construction projects in Yemen. Such risk factors can be divided into two major groups: (1) internal risk factors, including seven critical sources of risks, namely client, contractor, consultant, feasibility study and design, tendering and contract, resources and material supply and project management; and (2) external risk factors, including six sources of critical risk factors, namely national economic, political risk, local people, environment and safety, security risk and force-majeure-related risk factors. A risk factor framework was developed to identify the critical risk factors in the oil and gas construction projects in Yemen.Research limitations/implicationsThis research was limited to the oil and gas construction projects.Practical implicationsPractically, this study highlights the risk factors that cause a negative effect on the success of oil and gas construction projects in Yemen. The identification of these factors is the first step in the risk management process to develop strategic responses for risks and enhance the chances of project success.Social implicationsThe identification of risks factors that cause the failure of construction projects helps develop response strategies for these risks, thereby increasing the chances of project success reflected in the oil and gas sector, which is a main tributary of the national economy in developing countries.Originality/valueThis research is the pioneer for future investigations into this vital economic sector. Given the lack of resources and studies in the field of construction projects for the Yemeni oil and gas sector, the Yemeni government, oil companies and researchers in this field are expected to benefit from the results of this study. The critical risk factors specific to the oil and gas construction projects in Yemen should be further investigated with focus only on Yemen and its oil and gas industry players.


Facilities ◽  
2019 ◽  
Vol 38 (5/6) ◽  
pp. 378-394
Author(s):  
Sandra T. Matarneh ◽  
Mark Danso-Amoako ◽  
Salam Al-Bizri ◽  
Mark Gaterell ◽  
Rana T. Matarneh

Purpose This paper aims to identify a generic set of information requirements for facilities management (FM) systems, which should be included in BIM as-built models for efficient information exchange between BIM and FM systems, and to propose a process to identify, verify and collect the required information for use in FM systems during the project’s lifecycle. Design/methodology/approach Both qualitative and quantitative approaches were applied at different stages of the study’s sequential design. The collection and analysis of qualitative data was based on an extensive literature review of similar studies, standards, best practices and case study documentation. This was followed by a questionnaire survey of 191 FM practitioners in the UK. This formed the background of the third stage, which was the development of the information management process to streamline information exchange between building information models and FM systems. Findings The study identifies a generic list of information requirements of building information models to support FM systems. In addition, the study presents an information management process that generates a specific database for FM systems using an open data format. Originality/value The existing literature focuses on specific building types (educational buildings) or specific information requirements related to particular systems (mechanical systems). The existing standards, guidelines and best practices focus on the information requirements to support the operations and maintenance (O&M) phase in general. This study is different from previous studies because it develops a set of specific information requirements for building information models to support FM systems. FM organisations and owners can use the proposed list of information requirements as a base to generate specific data output for their FM systems’ input, to decrease the redundant activity of manual data entry and focus their efforts on key activities.


Sign in / Sign up

Export Citation Format

Share Document