scholarly journals Liner shipping network design with sensitive demand

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Cheaitou ◽  
Sadeque Hamdan ◽  
Rim Larbi

Purpose This paper aims to examine containership routing and speed optimization for maritime liner services. It focuses on a realistic case in which the transport demand, and consequently the collected revenue from the visited ports depend on the sailing speed. Design/methodology/approach The authors present an integer non-linear programming model for the containership routing and fleet sizing problem, in which the sailing speed of every leg, the ports to be included in the service and their sequence are optimized based on the net line's profit. The authors present a heuristic approach that is based on speed discretization and a genetic algorithm to solve the problem for large size instances. They present an application on a line provided by COSCO in 2017 between Asia and Europe. Findings The numerical results show that the proposed heuristic approach provides good quality solutions after a reasonable computation time. In addition, the demand sensitivity has a great impact on the selected route and therefore the profit function. Moreover, the more the demand is sensitive to the sailing speed, the higher the sailing speed value. Research limitations/implications The vessel carrying capacity is not considered in an explicit way. Originality/value This paper focuses on an important aspect in liner shipping, i.e. demand sensitivity to sailing speed. It brings a novel approach that is important in a context in which sailing speed strategies and market volatility are to be considered together in network design. This perspective has not been addressed previously.

2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.


Author(s):  
Mojtaba Aghajani ◽  
S. Ali Torabi

Purpose The purpose of this paper is to improve the relief procurement process as one of the most important elements of humanitarian logistics. For doing so, a novel two-round decision model is developed to capture the dynamic nature of the relief procurement process by allowing demand updating. The model accounts for the supply priority of items at response phase as well. Design/methodology/approach A mixed procurement/supply policy is developed through a mathematical model, which includes spot market procurement and a novel procurement auction mechanism combining the concepts of multi-attribute and combinatorial reverse auctions. The model is of bi-objective mixed-integer non-linear programming type, which is solved through the weighted augmented e-constraint method. A case study is also provided to illustrate the applicability of the model. Findings This study demonstrates the ability of proposed approach to model post-disaster procurement which considers the dynamic environment of the relief logistics. The sensitivity analyses provide useful managerial insights for decision makers by studying the impacts of critical parameters on the solutions. Originality/value This paper proposes a novel reverse auction framework for relief procurement in the form of a multi-attribute combinatorial auction. Also, to deal with dynamic environment in the post-disaster procurement, a novel two-period programming model with demand updating is proposed. Finally, by considering the priority of relief items and model’s applicability in the setting of relief logistics, post-disaster horizon is divided into three periods and a mixed procurement strategy is developed to determine an appropriate supply policy for each period.


Author(s):  
Qiang Meng ◽  
Shuaian Wang ◽  
Zhiyuan Liu

A model was developed for network design of a shipping service for large-scale intermodal liners that captured essential practical issues, including consistency with current services, slot purchasing, inland and maritime transportation, multiple-type containers, and origin-to-destination transit time. The model used a liner shipping hub-and-spoke network to facilitate laden container routing from one port to another. Laden container routing in the inland transportation network was combined with the maritime network by defining a set of candidate export and import ports. Empty container flow is described on the basis of path flow and leg flow in the inland and maritime networks, respectively. The problem of network design for shipping service of an intermodal liner was formulated as a mixed-integer linear programming model. The proposed model was used to design the shipping services for a global liner shipping company.


2017 ◽  
Vol 117 (9) ◽  
pp. 1782-1799 ◽  
Author(s):  
Ahmed Mohammed ◽  
Qian Wang ◽  
Xiaodong Li

Purpose The purpose of this paper is to investigate the economic feasibility of a three-echelon Halal Meat Supply Chain (HMSC) network that is monitored by a proposed radio frequency identification (RFID)-based management system for enhancing the integrity traceability of Halal meat products and to maximize the average integrity number of Halal meat products, maximize the return of investment (ROI), maximize the capacity utilization of facilities and minimize the total investment cost of the proposed RFID-monitoring system. The location-allocation problem of facilities needs also to be resolved in conjunction with the quantity flow of Halal meat products from farms to abattoirs and from abattoirs to retailers. Design/methodology/approach First, a deterministic multi-objective mixed integer linear programming model was developed and used for optimizing the proposed RFID-based HMSC network toward a comprised solution based on four conflicting objectives as described above. Second, a stochastic programming model was developed and used for examining the impact on the number of Halal meat products by altering the value of integrity percentage. The ε-constraint approach and the modified weighted sum approach were proposed for acquisition of non-inferior solutions obtained from the developed models. Furthermore, the Max-Min approach was used for selecting the best solution among them. Findings The research outcome shows the applicability of the developed models using a real case study. Based on the computational results, a reasonable ROI can be achievable by implementing RFID into the HMSC network. Research limitations/implications This work addresses interesting avenues for further research on exploring the HMSC network design under different types of uncertainties and transportation means. Also, environmentalism has been becoming increasingly a significant global problem in the present century. Thus, the presented model could be extended to include the environmental aspects as an objective function. Practical implications The model can be utilized for food supply chain designers. Also, it could be applied to realistic problems in the field of supply chain management. Originality/value Although there were a few studies focusing on the configuration of a number of HMSC networks, this area is overlooked by researchers. The study shows the developed methodology can be a useful tool for designers to determine a cost-effective design of food supply chain networks.


2019 ◽  
Vol 14 (3) ◽  
pp. 738-753
Author(s):  
Mina Mikhail ◽  
Mohammed El-Beheiry ◽  
Nahid Afia

Purpose The purpose of this paper is to develop a decision tool that enables supply chain (SC) architects to design resilient SC networks (SCNs). Two resilience design determinants are considered: SC density and node criticality. The effect of considering these determinants on network structures is highlighted based on the ability to resist disruptions and how SC performance is affected. Design/methodology/approach A mixed-integer non-linear programming model is proposed as a proactive strategy to develop resilient structures; design determinants are formulated and considered as constraints. An upper limit is set for each determinant, and resistance capacity and performance of the developed structures are evaluated. These upper limits are then changed until SC performance stabilizes in case of no disruption. Findings Resilient SCN structures are achieved at relatively low design determinants levels on the expense of profit and without experiencing shortage in case of no disruption. This reduction in profit can be minimized on setting counter values for the two determinants; relatively higher SC density with lower node criticality or vice versa. At very low SC density levels, the design model will reduce the number of open facilities largely leading to only one facility open at each echelon; therefore, shortage occurs and vulnerability to disruption increases. On the other hand, at high determinants levels, SC vulnerability also increases as a result of having more geographically clustered structures with higher inbound and outbound flows for each facility. Originality/value In this paper, a novel proactive decision tool is adopted to design resilient SCNs. Previous literature used metrics for SC density and node criticality to assess resilience; in this research, determinants are incorporated directly as constraints in the design model. Results give insight to SC architects on how to set determinant values to reach resilient structures with minimum performance loss in case of no disruption.


2014 ◽  
Vol 48 (2) ◽  
pp. 281-312 ◽  
Author(s):  
Berit D. Brouer ◽  
J. Fernando Alvarez ◽  
Christian E. M. Plum ◽  
David Pisinger ◽  
Mikkel M. Sigurd

2016 ◽  
Vol 50 (2) ◽  
pp. 195-214 ◽  
Author(s):  
Peyman Akhavan ◽  
S. Mahdi Hosseini ◽  
Morteza Abbasi

Purpose – The purpose of this paper is to provide a method for selection of the new product development (NPD) project team members, in such a way to maximize the expertise level of team members and at the same time, optimize knowledge sharing in the organization. Design/methodology/approach – According to the motivation-opportunity-ability framework, knowledge sharing antecedents were determined. Then, the problem of selecting appropriate members of the project team was formulated as a bi-objective integer non-linear programming model. Due to the uncertainty conditions in the evaluation of candidates, the fuzzy sets approach was used for modeling. To solve the problem, first, the non-linear programming model was converted to a linear model. Subsequently, the fuzzy bi-objective linear programming problem was solved by using an approximate algorithm. Findings – Results of applying the proposed method to an Iranian ship-building company showed its effectiveness in selecting appropriate members of the project team. Practical implications – With the aid of the proposed approach, project managers will be able to form effective project teams that while increasing the success probability of the project, facilitate the maintenance of knowledge acquired during the project lifecycle. Originality/value – This paper, for the first time, has tried to provide a method for selecting the NPD project team members, in a way that while selecting candidates with highest expertise, maximizes the sharing of knowledge among them.


2017 ◽  
Vol 27 (6) ◽  
pp. 1249-1265 ◽  
Author(s):  
Yijun Liu ◽  
Guiyong Zhang ◽  
Huan Lu ◽  
Zhi Zong

Purpose Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and the solutions of automated generated linear elements are generally of poor accuracy about especially gradient results. The proposed cell-based smoothed point interpolation method (CS-PIM) aims to improve the results accuracy of the thermoelastic problems via properly softening the overly-stiff stiffness. Design/methodology/approach This novel approach is based on the newly developed G space and weakened weak (w2) formulation, and of which shape functions are created using the point interpolation method and the cell-based gradient smoothing operation is conducted based on the linear triangular background cells. Findings Owing to the property of softened stiffness, the present method can generally achieve better accuracy and higher convergence results (especially for the temperature gradient and thermal stress solutions) than the FEM does by using the simplest linear triangular background cells, which has been examined by extensive numerical studies. Practical implications The CS-PIM is capable of producing more accurate results of temperature gradients as well as thermal stresses with the automated generated and unstructured background cells, which make it a better candidate for solving practical thermoelastic problems. Originality/value It is the first time that the novel CS-PIM was further developed for solving thermoelastic problems, which shows its tremendous potential for practical implications.


Sign in / Sign up

Export Citation Format

Share Document