A mixed procurement model for humanitarian relief chains

Author(s):  
Mojtaba Aghajani ◽  
S. Ali Torabi

Purpose The purpose of this paper is to improve the relief procurement process as one of the most important elements of humanitarian logistics. For doing so, a novel two-round decision model is developed to capture the dynamic nature of the relief procurement process by allowing demand updating. The model accounts for the supply priority of items at response phase as well. Design/methodology/approach A mixed procurement/supply policy is developed through a mathematical model, which includes spot market procurement and a novel procurement auction mechanism combining the concepts of multi-attribute and combinatorial reverse auctions. The model is of bi-objective mixed-integer non-linear programming type, which is solved through the weighted augmented e-constraint method. A case study is also provided to illustrate the applicability of the model. Findings This study demonstrates the ability of proposed approach to model post-disaster procurement which considers the dynamic environment of the relief logistics. The sensitivity analyses provide useful managerial insights for decision makers by studying the impacts of critical parameters on the solutions. Originality/value This paper proposes a novel reverse auction framework for relief procurement in the form of a multi-attribute combinatorial auction. Also, to deal with dynamic environment in the post-disaster procurement, a novel two-period programming model with demand updating is proposed. Finally, by considering the priority of relief items and model’s applicability in the setting of relief logistics, post-disaster horizon is divided into three periods and a mixed procurement strategy is developed to determine an appropriate supply policy for each period.

2018 ◽  
Vol 29 (4) ◽  
pp. 1279-1305 ◽  
Author(s):  
Shengbin Wang ◽  
Feng Liu ◽  
Lian Lian ◽  
Yuan Hong ◽  
Haozhe Chen

Purpose The purpose of this paper is to solve a post-disaster humanitarian logistics problem in which medical assistance teams are dispatched and the relief supplies are distributed among demand points. Design/methodology/approach A mixed integer-programming model and a two-stage hybrid metaheuristic method are developed to solve the problem. Problem instances of various sizes as well as a numerical example based on the 2016 Kyushu Earthquake in Japan are used to test the proposed model and algorithm. Findings Computational results based on comparisons with the state-of-the-art commercial software show that the proposed approach can quickly find near-optimal solutions, which is highly desirable in emergency situations. Research limitations/implications Real data of the parameters of the model are difficult to obtain. Future collaborations with organizations such as Red Cross and Federal Emergency Management Agency can be extremely helpful in collecting data in humanitarian logistics research. Practical implications The proposed model and algorithm can help governments and non-governmental organizations (NGOs) to effectively and efficiently allocate and coordinate different types of humanitarian relief resources, especially when these resources are limited. Originality/value This paper is among the first ones to consider both medical team scheduling (routing) and relief aid distribution as decision variables in the humanitarian logistics field. The contributions include developing a mathematical model and a heuristic algorithm, illustrating the model and algorithm using a numerical example, and providing a decision support tool for governments and NGOs to manage the relief resources in disasters.


2019 ◽  
Vol 14 (3) ◽  
pp. 738-753
Author(s):  
Mina Mikhail ◽  
Mohammed El-Beheiry ◽  
Nahid Afia

Purpose The purpose of this paper is to develop a decision tool that enables supply chain (SC) architects to design resilient SC networks (SCNs). Two resilience design determinants are considered: SC density and node criticality. The effect of considering these determinants on network structures is highlighted based on the ability to resist disruptions and how SC performance is affected. Design/methodology/approach A mixed-integer non-linear programming model is proposed as a proactive strategy to develop resilient structures; design determinants are formulated and considered as constraints. An upper limit is set for each determinant, and resistance capacity and performance of the developed structures are evaluated. These upper limits are then changed until SC performance stabilizes in case of no disruption. Findings Resilient SCN structures are achieved at relatively low design determinants levels on the expense of profit and without experiencing shortage in case of no disruption. This reduction in profit can be minimized on setting counter values for the two determinants; relatively higher SC density with lower node criticality or vice versa. At very low SC density levels, the design model will reduce the number of open facilities largely leading to only one facility open at each echelon; therefore, shortage occurs and vulnerability to disruption increases. On the other hand, at high determinants levels, SC vulnerability also increases as a result of having more geographically clustered structures with higher inbound and outbound flows for each facility. Originality/value In this paper, a novel proactive decision tool is adopted to design resilient SCNs. Previous literature used metrics for SC density and node criticality to assess resilience; in this research, determinants are incorporated directly as constraints in the design model. Results give insight to SC architects on how to set determinant values to reach resilient structures with minimum performance loss in case of no disruption.


2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kennedy Anderson Guimarães de Araújo ◽  
Tiberius Oliveira e Bonates ◽  
Bruno de Athayde Prata

Purpose This study aims to address the hybrid open shop problem (HOSP) with respect to the minimization of the overall finishing time or makespan. In the HOSP, we have to process n jobs in stages without preemption. Each job must be processed once in every stage, there is a set of mk identical machines in stage k and the production flow is immaterial. Design/methodology/approach Computational experiments carried out on a set of randomly generated instances showed that the minimal idleness heuristic (MIH) priority rule outperforms the longest processing time (LPT) rule proposed in the literature and the other proposed constructive methods on most instances. Findings The proposed mathematical model outperformed the existing model in the literature with respect to computing time, for small-sized instances, and solution quality within a time limit, for medium- and large-sized instances. The authors’ hybrid iterated local search (ILS) improved the solutions of the MIH rule, drastically outperforming the models on large-sized instances with respect to solution quality. Originality/value The authors formalize the HOSP, as well as argue its NP-hardness, and propose a mixed integer linear programming model to solve it. The authors propose several priority rules – constructive heuristics based on priority measures – for finding feasible solutions for the problem, consisting of adaptations of classical priority rules for scheduling problems. The authors also propose a hybrid ILS for improving the priority rules solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Amir-Mohammad Golmohammadi ◽  
Hasan Rasay ◽  
Zaynab Akhoundpour Amiri ◽  
Maryam Solgi ◽  
Negar Balajeh

Machine learning, neural networks, and metaheuristic algorithms are relatively new subjects, closely related to each other: learning is somehow an intrinsic part of all of them. On the other hand, cell formation (CF) and facility layout design are the two fundamental steps in the CMS implementation. To get a successful CMS design, addressing the interrelated decisions simultaneously is important. In this article, a new nonlinear mixed-integer programming model is presented which comprehensively considers solving the integrated dynamic cell formation and inter/intracell layouts in continuous space. In the proposed model, cells are configured in flexible shapes during the planning horizon considering cell capacity in each period. This study considers the exact information about facility layout design and material handling cost. The proposed model is an NP-hard mixed-integer nonlinear programming model. To optimize the proposed problem, first, three metaheuristic algorithms, that is, Genetic Algorithm (GA), Keshtel Algorithm (KA), and Red Deer Algorithm (RDA), are employed. Then, to further improve the quality of the solutions, using machine learning approaches and combining the results of the aforementioned algorithms, a new metaheuristic algorithm is proposed. Numerical examples, sensitivity analyses, and comparisons of the performances of the algorithms are conducted.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oğuzhan Ahmet Arık

PurposeThis paper presents a mixed-integer programming model for a single machine earliness/tardiness scheduling problem where the objective is to minimize total earliness/tardiness duration when the uncertainty of parameters such as processing times and due date is coded with grey numbers.Design/methodology/approachGrey theory and grey numbers are used for illustrating the uncertainty of parameters in processing times and common due date, where the objective is to minimize the total earliness/tardiness duration. The paper proposes a 0–1 mathematical model for the problem and an effective heuristic method for the problem by using expected processing times for ordering jobs.FindingsThe uncertainty of the processing times and common due date are encoded with grey numbers and a position-dependent mixed-integer mathematical programming model is proposed for the problem in order to minimize total grey earliness/tardiness duration of jobs having grey processing times and a common due date. By using expected processing times for ranking grey processing times, V-shaped property of the problem and an efficient heuristic method for the problem are proposed. Solutions obtained from the heuristic method show that the heuristic is effective. The experimental study also reveals that while differences between upper and lower bounds of grey processing times decrease, the proposed heuristic's performance decreases.Originality/valueThe grey theory and grey numbers have been rarely used as machine scheduling problems. Therefore, this study provides an important contribution to the literature.


The family of (VRPs) has received remarkable attention in the field of combinatorial optimization after its introduction in the paper of Dantzig and Ramser. VRPs determine a set of vehicle routes in order to accomplish transportation requests at minimum cost. In this paper we develop a mixed-integer non-linear programming model for vrp and apply it in electric vehicle charging.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Zou ◽  
Guangchuan Wu ◽  
Qian Zhang

PurposeRepetitive projects play an important role in the construction industry. A crucial point in scheduling this type of project lies in enabling timely movement of crews from unit to unit so as to minimize the adverse effect of work interruptions on both time and cost. This paper aims to examine a repetitive scheduling problem with work continuity constraints, involving a tradeoff among project duration, work interruptions and total project cost (TPC). To enhance flexibility and practicability, multi-crew execution is considered and the logic relation between units is allowed to be changed arbitrarily. That is, soft logic is considered.Design/methodology/approachThis paper proposes a multi-objective mixed-integer linear programming model with the capability of yielding the optimal tradeoff among three conflicting objectives. An efficient version of the e-constraint algorithm is customized to solve the model. This model is validated based on two case studies involving a small-scale and a practical-scale project, and the influence of using soft logic on project duration and total cost is analyzed via computational experiments.FindingsUsing soft logic provides more flexibility in minimizing project duration, work interruptions and TPC, especial for non-typical projects with a high percentage of non-typical activities.Research limitations/implicationsThe main limitation of the proposed model fails to consider the learning-forgetting phenomenon, which provides space for future research.Practical implicationsThis study assists practitioners in determining the “most preferred” schedule once additional information is provided.Originality/valueThis paper presents a new soft logic-based mathematical programming model to schedule repetitive projects with the goal of optimizing three conflicting objectives simultaneously.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arindam Ghosh

PurposeThe yield of defective items and emissions of greenhouse gases in supply chains are areas of concern. Organizations try to reduce the yield defective items and emissions. In this paper, a constrained optimization model is developed with consideration of the yield of defective items and strict carbon cap policy simultaneously and then optimized. Further, sensitivity analyses have been carried out to draw different managerial insights. Precisely, we have tried to address the following research questions: (1) how to optimize the cost for a two-echelon supply chain considering yield of defective items and strict carbon cap policy, (2) how the total expected cost and total expected emissions act with changing parameters.Design/methodology/approachThe mathematical modeling approach has been adopted to develop a model and further optimized it with optimization software. Costs and emissions from different areas of a supply chain have been derived and then the total cost and total emissions have been formulated mathematically. One constrained mixed-integer nonlinear programming (MINLP) problem has been formulated and solved considering emissions-related, velocity and production related-constraints. Further, different sensitivity analyses have been derived to draw some managerial insights.FindingsIn this paper, many decision variables have been calculated with a set of basic values of other parameters. It has been found that both cost and emissions can be controlled by controlling different parameters. It has been also found that some parameters have very little or no influence either on cost or emissions. In most cases, originations may exhaust the given limit of carbon cap to optimize their costs.Originality/valueIn spite of my sincere efforts, no paper has been found that has considered the yield of defective items and strict carbon cap policy simultaneously. In this paper, it is assumed that both demand and defect rates are random in nature. The model, presented in this paper may give insights to develop different supply chain models with consideration of both defective items and strict carbon cap policy. Sensitivity analyses, drawn in this paper may give deep insights to managers and carbon regulatory bodies.


Sign in / Sign up

Export Citation Format

Share Document