scholarly journals A comparative study of composite structures reinforced with carbon, glass or natural fibers

2017 ◽  
Vol 13 (2) ◽  
pp. 165-187 ◽  
Author(s):  
S. Brischetto

Purpose The purpose of this paper is to propose a comparative study between different structures composed of fiber-reinforced composite materials. Plates, cylinders and cylindrical and spherical shell panels in symmetric 0°/90°/0° and antisymmetric 0°/90°/0°/90° configurations are analyzed considering carbon fiber, glass fiber and linoleum fiber reinforcements. Design/methodology/approach A free vibration analysis is proposed for different materials, lamination sequences, vibration modes, half-wave numbers and thickness ratios. Such an analysis is conducted by means of an exact three-dimensional shell model which is valid for simply supported structures and cross-ply laminations. The employed model is based on a layer-wise approach and on three-dimensional shell equilibrium equations written in general orthogonal curvilinear coordinates. Findings The proposed study confirms the well-known superiority of the carbon fiber-reinforced composites. Linoleum fiber-reinforced composites prove to be comparable to glass fiber-reinforced composites in the case of free vibration analysis. Therefore, similar frequencies are obtained for all the geometries, thickness ratios, laminations sequences, vibration modes and a large spectrum of half-wave numbers. This partial conclusion needs further confirmations via static, buckling and fatigue analyses. Originality/value An exact three-dimensional shell model has been used to compare several geometries embedding carbon fiber composites and natural fiber composites.

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2599
Author(s):  
Boyao Wang ◽  
Bin He ◽  
Zhanwen Wang ◽  
Shengli Qi ◽  
Daijun Zhang ◽  
...  

A series of hybrid fiber-reinforced composites were prepared with polyimide fiber and carbon fiber as the reinforcement and epoxy resin as the matrix. The influence of stacking sequence on the Charpy impact and flexural properties of the composites as well as the failure modes were studied. The results showed that hybrid fiber-reinforced composites yielded nearly 50% increment in Charpy impact strength compared with the ones reinforced by carbon fiber. The flexural performance was significantly improved compared with those reinforced solely by polyimide fibers and was greatly affected by the stacking sequence. The specimens with compressive sides distributed with carbon fiber possessed higher flexural strength, while those holding a sandwich-like structure with carbon fiber filling between the outer layers displayed a higher flexural modulus.


Sign in / Sign up

Export Citation Format

Share Document