A review of slicing methods for directed energy deposition based additive manufacturing

2018 ◽  
Vol 24 (6) ◽  
pp. 1012-1025 ◽  
Author(s):  
Jing Xu ◽  
Xizhi Gu ◽  
Donghong Ding ◽  
Zengxi Pan ◽  
Ken Chen

Purpose The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing methods, which are particularly suitable for the directed energy deposition (DED) process to improve the surface quality and eliminate the usage of support structures. Design/methodology/approach In this paper, the published slicing methods are clarified into three categories: the traditional slicing methods (e.g. the basic and adaptive slicing methods) performed in the powder bed fusion (PBF) system, the multi-direction slicing methods and non-layerwise slicing methods used in DED systems. The traditional slicing methods are reviewed only briefly because a review article already exists for them, and the latter two slicing methods are reviewed comprehensively with further discussion and outlook. Findings A few traditional slicing approaches were developed in the literature, including basic and adaptive slicing methods. These methods are efficient and robust when they are performed in the PBF system. However, they are retarded in the DED process because costly support structures are required to sustain overhanging parts and their surface quality and contour accuracy are not satisfactory. This limitation has led to the development of various multi-direction and non-layerwise slicing methods to improve the surface quality and enable the production of overhangs with minimum supports. Originality/value An original review of the AM slicing methods is provided in this paper. For the traditional slicing methods and the multi-direction and non-layerwise slicing method, the published slicing strategies are discussed and compared. Recommendations for future slicing work are also provided.

2021 ◽  
Vol 27 (11) ◽  
pp. 37-42
Author(s):  
Himani Naesstroem ◽  
Frank Brueckner ◽  
Alexander F.H. Kaplan

Purpose This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing. Design/methodology/approach Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens. Findings The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation. Originality/value Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.


2016 ◽  
Author(s):  
Abdalla R. Nassar ◽  
Edward W. Reutzel ◽  
Stephen W. Brown ◽  
John P. Morgan ◽  
Jacob P. Morgan ◽  
...  

Author(s):  
Gabriele Piscopo ◽  
Alessandro Salmi ◽  
Eleonora Atzeni

AbstractThe production of large components is one of the most powerful applications of laser powder-directed energy deposition (LP-DED) processes. High productivity could be achieved, when focusing on industrial applications, by selecting the proper process parameters. However, it is of crucial importance to understand the strategies that are necessary to increase productivity while maintaining the overall part quality and minimizing the need for post-processing. In this paper, an analysis of the dimensional deviations, surface roughness and subsurface residual stresses of samples produced by LP-DED is described as a function of the applied energy input. The aim of this work is to analyze the effects of high-productivity process parameters on the surface quality and the mechanical characteristics of the samples. The obtained results show that the analyzed process parameters affect the dimensional deviations and the residual stresses, but have a very little influence on surface roughness, which is instead dominated by the presence of unmelted particles.


2021 ◽  
Vol 39 ◽  
pp. 101845
Author(s):  
J.P. Kelly ◽  
J.W. Elmer ◽  
F.J. Ryerson ◽  
J.R.I. Lee ◽  
J.J. Haslam

2019 ◽  
Vol 161 ◽  
pp. 86-94 ◽  
Author(s):  
James C. Haley ◽  
Baolong Zheng ◽  
Umberto Scipioni Bertoli ◽  
Alexander D. Dupuy ◽  
Julie M. Schoenung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document