Travel time prediction in transport and logistics

2019 ◽  
Vol 49 (3) ◽  
pp. 277-306 ◽  
Author(s):  
Xia Li ◽  
Ruibin Bai ◽  
Peer-Olaf Siebers ◽  
Christian Wagner

Purpose Many transport and logistics companies nowadays use raw vehicle GPS data for travel time prediction. However, they face difficult challenges in terms of the costs of information storage, as well as the quality of the prediction. This paper aims to systematically investigate various meta-data (features) that require significantly less storage space but provide sufficient information for high-quality travel time predictions. Design/methodology/approach The paper systematically studied the combinatorial effects of features and different model fitting strategies with two popular decision tree ensemble methods for travel time prediction, namely, random forests and gradient boosting regression trees. First, the investigation was conducted using pseudo travel time data that were generated using a pseudo travel time sampling algorithm, which allows generating travel time data using different noise processes so that the prediction performance under different travel conditions and noise characteristics can be studied systematically. The results and findings were then further compared and evaluated through a real-life case. Findings The paper provides empirical insights and guidelines about how raw GPS data can be reduced into a small-sized feature vector for the purposes of vehicle travel time prediction. It suggests that, add travel time observations from the previous departure time intervals are beneficial to the prediction, particularly when there is no other types of real-time information (e.g. traffic flow, speed) are available. It was also found that modular model fitting does not improve the quality of the prediction in all experimental settings used in this paper. Research limitations/implications The findings are primarily based on empirical studies on limited real-life data instances, and the results may lack generalisabilities. Therefore, the researchers are encouraged to test them further in more real-life data instances. Practical implications The paper includes implications and guidelines for the development of efficient GPS data storage and high-quality travel time prediction under different types of travel conditions. Originality/value This paper systematically studies the combinatorial feature effects for tree-ensemble-based travel time prediction approaches.

2018 ◽  
Vol 45 (2) ◽  
pp. 77-86 ◽  
Author(s):  
Hang Yang ◽  
Yajie Zou ◽  
Zhongyu Wang ◽  
Bing Wu

Short-term travel time prediction is an essential input to intelligent transportation systems. Timely and accurate traffic forecasting is necessary for advanced traffic management systems and advanced traveler information systems. Despite several short-term travel time prediction approaches have been proposed in the past decade, especially for hybrid models that consist of machine learning models and statistical models, few studies focus on the over-fitting problem brought by hybrid models. The over-fitting problem deteriorates the prediction accuracy especially during peak hours. This paper proposes a hybrid model that embraces wavelet neural network (WNN), Markov chain (MAR), and the volatility (VOA) model for short-term travel time prediction in a freeway system. The purpose of this paper is to provide deeper insights into underlining dynamic traffic patterns and to improve the prediction accuracy and robustness. The method takes periodical analysis, error correction, and noise extraction into consideration and improve the forecasting performance in peak hours. The proposed methodology predicts travel time by decomposing travel time data into three components: a periodic trend presented by a modified WNN, a residual part modeled by Markov chain, and the volatility part estimated by the modified generalized autoregressive conditional heteroscedasticity model. Forecasting performance is investigated with freeway travel time data from Houston, Texas and examined by three measures: mean absolute error, mean absolute percentage error, and root mean square error. The results show that the travel times predicted by the WNN-MAR-VOA method are robust and accurate. Meanwhile, the proposed method is able to capture the underlying periodic characteristics and volatility nature of travel time data.


2019 ◽  
Vol 48 (3) ◽  
pp. 276-289
Author(s):  
Akhilesh Jayan ◽  
Sasidharan Premakumari Anusha

Travel time information is an integral part in various ITS applications such as Advanced Traveler Information System, Advanced Traffic Management Systems etc. Travel time data can be collected manually or by using advanced sensors. In this study, suitability of Bluetooth and RFID (Radio Frequency Identifier) sensors for data collection under mixed traffic conditions as prevailing in India is explored. Reliability analysis was carried out using Cumulative Frequency Diagrams (CFDs) and buffer time index along with evaluation of penetration rate and match rate of RFID and Bluetooth sensors. Further, travel time of cars for a subsequent week was predicted using the travel time data obtained from RFID sensors for the present week as input in ARIMA modeling method. For predicting the travel time of different vehicle categories, relationships were framed between travel time of different vehicle categories and travel time of cars determined from RFID sensors. The stream travel time was then determined considering the travel time of all vehicle categories. The R-Square and MAPE values were used as performance measure for checking the accuracy of the developed models and were closer to one and lower respectively, indicating the suitability of the RFID sensors for travel time prediction under mixed traffic conditions. The developed estimation schemes can be used as part of travel time information applications in real time Intelligent Transportation System (ITS) implementations.


ICTIS 2013 ◽  
2013 ◽  
Author(s):  
Yanguo Huang ◽  
Lunhui Xu ◽  
Xianyan Kuang

Author(s):  
Vasileios Zeimpekis

Effective travel time prediction is of great importance for efficient real-time management of freight deliveries, especially in urban networks. This is due to the need for dynamic handling of unexpected events, which is an important factor for successful completion of a delivery schedule in a predefined time period. This chapter discusses the prediction results generated by two travel time estimation methods that use historical and real-time data respectively. The first method follows the k-nn model, which relies on the non-parametric regression method, whereas the second one relies on an interpolation scheme which is employed during the transmission of real-time traffic data in fixed intervals. The study focuses on exploring the interaction of factors that affect prediction accuracy by modelling both prediction methods. The data employed are provided by real-life scenarios of a freight carrier and the experiments follow a 2-level full factorial design approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bo Qiu ◽  
Wei Fan

Purpose Metropolitan areas suffer from frequent road traffic congestion not only during peak hours but also during off-peak periods. Different machine learning methods have been used in travel time prediction, however, such machine learning methods practically face the problem of overfitting. Tree-based ensembles have been applied in various prediction fields, and such approaches usually produce high prediction accuracy by aggregating and averaging individual decision trees. The inherent advantages of these approaches not only get better prediction results but also have a good bias-variance trade-off which can help to avoid overfitting. However, the reality is that the application of tree-based integration algorithms in traffic prediction is still limited. This study aims to improve the accuracy and interpretability of the models by using random forest (RF) to analyze and model the travel time on freeways. Design/methodology/approach As the traffic conditions often greatly change, the prediction results are often unsatisfactory. To improve the accuracy of short-term travel time prediction in the freeway network, a practically feasible and computationally efficient RF prediction method for real-world freeways by using probe traffic data was generated. In addition, the variables’ relative importance was ranked, which provides an investigation platform to gain a better understanding of how different contributing factors might affect travel time on freeways. Findings The parameters of the RF model were estimated by using the training sample set. After the parameter tuning process was completed, the proposed RF model was developed. The features’ relative importance showed that the variables (travel time 15 min before) and time of day (TOD) contribute the most to the predicted travel time result. The model performance was also evaluated and compared against the extreme gradient boosting method and the results indicated that the RF always produces more accurate travel time predictions. Originality/value This research developed an RF method to predict the freeway travel time by using the probe vehicle-based traffic data and weather data. Detailed information about the input variables and data pre-processing were presented. To measure the effectiveness of proposed travel time prediction algorithms, the mean absolute percentage errors were computed for different observation segments combined with different prediction horizons ranging from 15 to 60 min.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1876
Author(s):  
Yuan Yuan ◽  
Chunfu Shao ◽  
Zhichao Cao ◽  
Zhaocheng He ◽  
Changsheng Zhu ◽  
...  

Travel time data is an important factor for evaluating the performance of a public transport system. In terms of time and space within the nature of uncertainty, bus travel time is dynamic and flexible. Since the change of traffic status is periodic, contagious or even sudden, the changing mechanism of that is a hidden mode. Therefore, bus travel time prediction is a challenging problem in intelligent transportation system (ITS). Allowing for a large amount of traffic data can be collected at present but lack of precisely-conducting, it is still worth exploring how to extract feature sets that can accurately predict bus travel time from these data. Hence, a feature extraction framework based on the deep learning models were developed to reflect the state of bus travel time. First, the study introduced different historical stages of bus signaling time, taxi speed, the stop identity (ID) of spatial characteristics, and real-time possible arrival time, signified by fourteen spatiotemporal characteristic values. Then, an embedding network is proposed to leverage a wide and deep structure to mate the spatial and temporal data. In order to meet the temporal dependence requirements, an attention mechanism for a Recurrent Neural Network (RNN) was designed in this research in order to capture the temporal information. Finally, a Deep Neural Networks (DNN) was implemented in this research in order to achieve the dynamic bus travel time prediction. Two case studies of Guangzhou and Shenzhen were tested. The results showed that the performance of the algorithm was more efficient than that of the traditional machine-learning model and promoted by 4.82% compared to the deep neural network applied to the initial feature space. Moreover, the study visualized the weighted cost of attention on the bus’s travel time features during a certain running state. Therefore, the study demonstrated the proposed model enabled to understand the characteristic data of transit travel time with visualization.


Sign in / Sign up

Export Citation Format

Share Document