Influence of multiwalled carbon nanotubes content on thermal conductivity of polyactic acid/liquid natural rubber nanocomposite

2016 ◽  
Vol 13 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Mou’ad A. Tarawneh ◽  
Adilah Mat Ali ◽  
Sahrim Hj Ahmad ◽  
L.J. Yu

Purpose The purpose of this paper is to study the effects of multi-walled carbon nanotubes (MWCNTs) loading on the thermal conductivity of nanocomposites. Design/methodology/approach In this paper, the polymer nanocomposite of MWCNT nanoparticles incorporated with PLA and LNR as compatibilizer were prepared via melt blending method. Findings The result has shown that the sample with 3.5 wt.% of MWCNT content provided higher thermal conductivity which is believed to be the optimum loading that formed the suitable percolated network for phonon conduction facilitation because of better dispersion in the PLA/LNR matrix as confirmed by SEM micrograph. Originality/value Thermal conductivity of polylactic acid (PLA)/liquid natural rubber (LNR) matrix improved with MWCNT.

2016 ◽  
Vol 1133 ◽  
pp. 481-485 ◽  
Author(s):  
Adilah Mat Ali ◽  
Sahrim H. Ahmad

This article studies the thermal properties of multi-walled carbon nanotubes (MWCNT) reinforced polylactic acid (PLA)/liquid natural rubber (LNR) blends which prepared via melt blending method. Various percentages (0.5, 1.5, 2.5, 3.5 and 4 wt%) of MWCNT were added into PLA/LNR blend. TGA shows that the addition of MWCNT into PLA/LNR blends helps to improve thermal stability of the PLA/LNR/MWCNT nanocomposites. DSC shows that the glass transition temperature increased when 0.5%, 1.5%, 2.5% and 3.5% of MWCNT was added to the PLA/LNR blend. The cold crystallization and melting temperature were reduced when MWCNT was added in the PLA/LNR blend systems. The SEM micrographs confirm the effect of good dispersion of 3.5wt% of MWCNT in PLA/LNR blend helps to promote well combined MWCNT-matrix networks and generate the synergistic effect of the system which is improved the thermal properties significantly.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Michael Zimmer ◽  
Qunfeng Cheng ◽  
Shu Li ◽  
James Brooks ◽  
Richard Liang ◽  
...  

There are documented advantages to using carbon nanotubes (CNTs) in composites for various property enhancements. However, to date, only limited studies have been conducted on using of longer CNTs over 1 mm in length. This study used long multiwalled carbon nanotubes (LMWCNTs) and their longer extended networks to test multiple properties in thermal conductivity, electrical conductivity, mechanical strength, and modulus and then compared these properties to those of shorter multi-walled carbon nanotubes (SMWCNTs). For carbon fiber-reinforced composites, the longer graphite paths from LMWCNTs in the matrix were expected to improve all properties. The longer networks were expected to allow for more undisturbed phonon transportation to improve thermal conductivity. This in turn relates to improved electrical conductivity and better mechanical properties. However, results have shown that the LMWCNTs do not improve or decrease thermal conductivity, whereas the shorter MWCNTs provide mixed results. LMWCNTs did show improvements in electrical, mechanical, and physical properties, but compared to shorter MWCNTs, the results in other certain properties varied. This perplexing outcome resides in the functioning of the networks made by both the LMWCNTs and shorter MWCNTs.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Mou’ad A. Tarawneh ◽  
Dalila Shahdan ◽  
Sahrim Hj Ahmad

The mechanical and conductivity of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with poly(lactic acid) (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90 : 10. The MPNC of PLA/LNR/NiZn ferrite then was prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1–5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases, the tensile strength also increases until an optimum value of filler loading was reached. Young’s modulus, tensile strength, and elongation at break have also increased. The study proves that NiZn ferrite is an excellent reinforcement filler in PLA/LNR matrix. The optimum thermal conductivity of PLA/LNR composites achieved with (4 wt% NiZn) due to the effective combination of NiZn-NiZn conductive networks. The scanning electron micrograph (SEM) reveal that the aspect ratio and filler orientation in the PLA/LNR matrix also strongly promoted interfacial adhesion between the filler and the matrix to control its properties.


2017 ◽  
Vol 268 ◽  
pp. 365-369
Author(s):  
Mohd Shaiful Zaidi Mat Desa ◽  
Azman Hassan ◽  
Agus Arsad

The effects of carboxylic functionalized multi-walled carbon nanotubes (CNT) contents on electrical and flammability properties of poly(lactic) acid/CNT nanocomposites were investigated. The PLA/CNT nanocomposites were prepared by melt-blending method, where the CNT contents were varied from 1 to 9 phr. From flammability properties analysis, nanocomposites with 9 phr CNT showed the highest limiting oxygen index (LOI) of 26.5 vol% as compared to 19.5 vol% of neat PLA. All nanocomposites with higher than 5 phr CNT contents also passed the V0 class of UL-94 vertical burning test rating. The direct current electrical test revealed that the electrical conductivity increases by approximately seven orders of magnitude from 2.19 × 10-11 S/m of neat PLA to 2.00 × 10-4 S/m for PLA/CNT nanocomposites with 5 phr CNT contents. The electrical conductivity of PLA/CNT continues to increase beyond 5 phr contents, with 2.26 × 10-3 S/m and 4.29 × 10-3 S/m respectively for 7 and 9 phr contents. The good dispersion of CNT leads to formation of electron conducting CNT networks throughout the insulating PLA matrix.


Sign in / Sign up

Export Citation Format

Share Document