Implementation of multi-objective Jaya optimization for performance improvement in machining curve hole in P20 mold steel by sinking EDM

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Diwesh Babruwan Meshram ◽  
Vikas Gohil ◽  
Yogesh Madan Puri ◽  
Sachin Ambade

Purpose Machining of curved channels using electrical discharge machining (EDM) is a novel approach. In this study, an experimental setup was designed, developed and mounted on die-sinking EDM to manufacture curve channels in AISI P20 mold steel. Design/methodology/approach The effect of specific machining parameters such as peak current, pulse on time, duty factor and lift over material removal rate (MRR) and tool wear rate (TWR) were studied. Multi-objective optimization was performed using Taguchi technique and Jaya algorithm. Findings The experimental results revealed current and pulse on time to have the predominant effect over material removal and tool wear diagnostic parameters with contributions of 39.67, 32.04% and 43.05, 36.52%, respectively. The improvements in material removal and tool wear as per the various optimization techniques were 35.48 and 10.91%, respectively. Originality/value Thus, Taguchi method was used for effective optimization of the machining parameters. Further, nature-based Jaya algorithm was implemented for obtaining the optimum values of TWR and MRR.

Author(s):  
Arun Kumar Rouniyar ◽  
Pragya Shandilya

Magnetic field assisted powder mixed electrical discharge machining is a hybrid machining process with suitable modification in electrical discharge machining combining the use of magnetic field and fine powder in the dielectric fluid. Aluminum 6061 alloy has found highly significance for the advanced industries like automotive, aerospace, electrical, marine, food processing and chemical due to good corrosion resistance, high strength-to-weight ratio, ease of weldability. In this present work, magnetic field assisted powder mixed electrical discharge machining setup was fabricated and experiments were performed using one factor at a time approach for aluminum 6061 alloy. The individual effect of machining parameters namely, peak current, pulse on time, pulse off time, powder concentration and magnetic field on material removal rate and tool wear rate was investigated. The effect of peak current was found to be dominant on material removal rate and tool wear rate followed by pulse on time, powder concentration and magnetic field. Increase in material removal rate and tool wear rate was observed with increase in peak current, pulse on time and a decrease in pulse off time, whereas, for material removal rate increases and tool wear rate decreases up to the certain value and follow the reverse trend with an increase in powder concentration. Material removal rate was increased and tool wear rate was decreased with increase in magnetic field.


2020 ◽  
Vol 998 ◽  
pp. 55-60
Author(s):  
Jurapun Phimoolchat ◽  
Apiwat Muttamara

This paper focused on Grey relational analysis (GRA) to optimize EDM parameters through multi-objective optimization for Al2024 aluminum and electrode graphite ISO-63 was used as a cutting tool. The process parameters pulse on time, duty factor, pulse current and open voltage. Performance characteristics examined included material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Taguchi’s 27 experimental designs, often called an orthogonal array (OA), was utilized to ignore interaction and concentrate on main effect estimation. GRA was performed to optimize input parameters levels. Results were that MRR increased from 35.00 to 35.11 mm3/min, EWR decreased from 11.63 to 10.89 mm3/min, and SR decreased from 5.01 to 4.97 μm. Taguchi and GRA resulted in clear improvements in MRR, EWR, and SR.


Electro discharge machining is a non-traditional machining process used for machining hard-to-machine materials, such as various grades of titanium alloys, heat-treated alloy steels, composites, tungsten carbides, and so forth. These materials are hard to machine with customary machining procedures like drilling, milling and hence electro-discharge machining is used to machine such materials to get better quality and efficiency. These materials are generally utilized in current industries like die making industries, aeronautics, nuclear industries, and medical fields. This type of machining is thermalbased, and machining takes place due to repetitive electric sparks that generate between workpiece and tool. Both tools and workpieces are inundated in a dielectric liquid, which has two primary functions. In the first place, it behaves like a medium between the work metal and the tool. Second, it is a flushing agent to expel the machined metal from the machined zone. Machining parameters like a pulse on time, current, wire feed the tool and gap voltage affect the output responses like surface roughness and material removal rate. The material removal rate is a significant parameter that determines machining efficiency. Surface roughness is also a vital parameter that decides machining quality. A lot of research has been conducted to determine the optimum parameters for obtaining the best results. In the present work, a comprehensive review of different types of EDM and the effect of various machining parameters on the surface roughness, material removal rate, and other response parameters has been done.


Author(s):  
Uvaraja Ragavendran ◽  
Ranjan Kumar Ghadai ◽  
Akash Kumar Bhoi ◽  
Manickam Ramachandran ◽  
Kanak Kalita

Electrical discharge machining (EDM) is a broadly used nonconventional material removal process for the machining of conductive work material irrespective of their hardness. In this article, empirical models for material removal rate (MRR) and surface roughness (Ra) of the workpiece are developed based on the extensive experiments performed on a special steel (WP7V) workpiece using a copper electrode. To account for the various parameters, an experimental design based on response surface methodology (RSM) is conducted considering three different factors namely — current, pulse-on-time, and pulse-off-time, each having three different levels. Analysis of variance (ANOVA) is conducted to test the statistical significance of the proposed empirical models. It is essential to determine the relationship and significance of input–output variation. Thus a sensitivity analysis is conducted. The interaction effect of input variables is also studied. Two different state-of-art optimization techniques, namely genetic algorithm (GA) and particle swarm optimization (PSO), are applied to predict the optimal combination of process parameters. Finally, multi-objective optimization is also carried out to simultaneously maximize MRR while minimizing Ra.


2009 ◽  
Vol 83-86 ◽  
pp. 672-679 ◽  
Author(s):  
Suleiman Abdulkareem ◽  
Ahsan Ali Khan ◽  
Mohamed Konneh

In electrical discharge machining (EDM), material is removed by a series of electrical discharge between the electrode (tool) and the workpiece that develops a temperature of about 8,0000C to 12,0000C. Due to high temperature of the sparks, work material is melted and vapourized, at the same time the electrode material is also eroded by melting and vapourization. Electrodes wear (EW) process is quite similar to the material removal mechanism as the electrode and the workpiece are considered as a set of electrode in EDM. In the present study effort has been made to reduce EW by cooling, using liquid nitrogen during the EDM of titanium alloy. Investigation on the effect of cooling on electrode wear (EW), material removal rate (MRR) and surface roughness (Ra) of the workpiece was carried out. Current (I), pulse on-time (ton), pause off-time (toff) and voltage (v) were considered as the machining parameters. Design of experiment (DOE) was used to design the experimental works. Cooling of electrode by this technique reduced the melting and vapourization of electrode material and enhances electrode life. It was possible to reduce EW up to 27% by applying this technique while MRR and Ra were improved by 18% and 8% respectively.


2019 ◽  
Vol 16 (4) ◽  
pp. 526-538 ◽  
Author(s):  
Akhil Khajuria ◽  
Modassir Akhtar ◽  
Manish Kumar Pandey ◽  
Mayur Pratap Singh ◽  
Ankush Raina ◽  
...  

Purpose AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study the effects of variation in weight percentage of ceramic Al2O3 particulates during electrical discharge machining (EDM) of stir cast AA2014 composites. Scanning electron microscopy (SEM) examination was carried out to study characteristics of EDMed surface of Al2O3/AA2014 composites. Design/methodology/approach The effect of machining parameters on performance measures during sinker EDM of stir cast Al2O3/AA2014 composites was examined by “one factor at a time” (OFAT) method. The stir cast samples were obtained by using three levels of weight percentage of Al2O3 particulates, i.e. 0 Wt.%, 10 Wt.% and 20 Wt.% with density 1.87 g/cc, 2.35 g/cc and 2.98 g/cc respectively. Machining parameters varied were peak current (1-30 amp), discharge voltage (30-100 V), pulse on time (15-300 µs) and pulse off time (15-450 µs) to study their influence on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR). Findings MRR and SR decreased with an increase in weight percentage of ceramic Al2O3 particulates at the expense of TWR. This was attributed to increased microhardness for reinforced stir cast composites. However, microhardness of EDMed samples at fixed values of machining parameters, i.e. 9 amp current, 60 V voltage, 90 µs pulse off time and 90 µs pulse on time reduced by 58.34, 52.25 and 46.85 per cent for stir cast AA2014, 10 Wt.% Al2O3/AA2014 and 20 Wt.% Al2O3/AA2014, respectively. SEM and quantitative energy dispersive spectroscopy (EDS) analysis revealed ceramic Al2O3 particulate thermal spalling in 20 Wt.% Al2O3/AA2014 composite. This was because of increased particulate weight percentage leading to steep temperature gradients in between layers of base material and heat affected zone. Originality/value This work was an essential step to assess the machinability for material design of Al2O3 reinforced aluminium metal matrix composites (AMMCs). Experimental investigation on sinker EDM of high weight fraction of particulates in AA2014, i.e. 10 Wt.% Al2O3 and 20 Wt.% Al2O3, has not been reported in archival literature. The AMMCs were EDMed at variable peak currents, voltages, pulse on and pulse off times. The effects of process parameters on MRR, TWR and SR were analysed with comparisons made to show the effect of Al2O3 particulate contents.


2014 ◽  
Vol 660 ◽  
pp. 43-47
Author(s):  
Amran Ali Mohd ◽  
Suraya Laily ◽  
Aisyah Fatin ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

This paper investigates the performance of brass electrode on the removal of aluminium alloys LM6 (Al-Sil2) in an electrical discharge machining (EDM) die-sinking. The machining parameters such as pulse-on time, pulse-off time and peak current were selected to find the responses on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Brass with diameter of 10mm was chosen as an electrode. Orthogonal array of Taguchi method was used to develop experimental matrix and to optimize the MRR, EWR and Ra. It is found that the current is the most significantly affected the MRR, EWR and Ra while pulse on time, pulse off time and voltage are less significant factor that affected the responses. Percentage optimum value of MRR increases to 3.99%, however EWR and Ra reduce to 3.10% and 2.48% respectively. Thus, it shows that brass having capability to cut aluminium alloys LM6.


Author(s):  
Gajanan Kamble ◽  
Dr. N. Lakshamanaswamy ◽  
Gangadhara H S ◽  
Sharon Markus ◽  
N. Rajath

Wire cut electrical discharge machining (WEDM) is a hybrid manufacturing technology which enables machining of all engineering materials. This research article deals with investigation on Optimization of the Process Parameters of the wire cut EDM of Bronze material of dimension (80*80*40) in mm. Material removal rate, Surface roughness and Kerf width were studied against the process parameters such as Pulse on time(TON), Pulse off time (TOFF) and Current(IP). The machining parameters for wire EDM were optimized for achieving the combined objectives. As there are three input parameters 27 experiments is carried out and full factorial is used. Optimized parameters were found using (ANOVA) and the error percentage can be validated and parameter contribution for the Material removal rate (MRR) and Surface roughness were found.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 164
Author(s):  
Panagiotis Karmiris-Obratański ◽  
Emmanouil L. Papazoglou ◽  
Beata Leszczyńska-Madej ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Electrical Discharge Machining (EDM) is a non-traditional cutting technology that is extensively utilized in contemporary industry, particularly for machining difficult-to-cut materials. EDM may be used to create complicated forms and geometries with great dimensional precision. Titanium alloys are widely used in high-end applications owing to their unique intrinsic characteristics. Nonetheless, they have low machinability. The current paper includes an experimental examination of EDM’s Ti-6Al-4V ELI (Extra Low Interstitials through controlled interstitial element levels) process utilizing a graphite electrode. The pulse-on current (IP) and pulse-on time (Ton) were used as control parameters, and machining performance was measured in terms of Material Removal Rate (MRR), Tool Material Removal Rate (TMRR), and Tool Wear Ratio (TWR). The Surface Roughness (SR) was estimated based on the mean roughness (SRa) and maximum peak to valley height (SRz), while, the EDMed surfaces were also examined using optical and SEM microscopy and cross-sections to determine the Average White Layer Thickness (AWLT). Finally, for the indices above, Analysis of Variance (ANOVA) was conducted, whilst semi-empirical correlations for the MRR and TMRR were given using the Response Surface Method (RSM). The results show that the pulse-on time is the most significant parameter of the machining process that may increase the MRR up to 354%. Pulse-on current and pulse-on time are shown to have an impact on the surface integrity of the finished product. Furthermore, statistics, SEM, and EDX images on material removal efficiency and tool wear rate are offered to support the core causes of surface and sub-surface damage. The average microhardness of the White Layer (WL) is 1786 HV.


Author(s):  
Baliram Rajaram Jadhav ◽  
M. S. Sohani ◽  
Shailesh Shirguppikar

The aim of this study is the multi- objective optimization of process parameters of Al- Si alloy in powder mixed electrical discharge machining for obtaining minimum surface roughness, minimum tool wear rate, and maximum material removal rate. The important machining parameters were selected as discharge current, voltage and pulse-on time. Experiments were conducted by selecting different operating levels for the three parameters according to Taguchi's Design of Experiments. The multi-objective optimization was performed using Grey Relation Analysis to determine the optimal solution. The Grey Relation Grade values were then analysed using analysis of variance to determine the most contributing input parameter. On analysis it was found that peak current, pulse-on time, and voltage had an influence of 94.73%, 3.32% and 0.36%, respectively, on the multi-performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document