An initial study of the risk of coal-roof water flow based on the “three maps two predictions” method

2017 ◽  
Vol 14 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Guan Yingbin ◽  
Wang Xinghen ◽  
Guo Shengwen

Purpose The purpose of study is to develop methods for damage prevention and production safety. Design/methodology/approach In this study, water aquifers in various districts of the Merlin Temple coal-mining area number 3-1 were examined using a fuzzy comprehensive evaluation. Using FLAC-3D software, a three-dimensional numerical model based on the geological conditions of the first mining area was built to produce a numerical simulation of the fissure-zone and caving development in the area. Findings The simulation results, together with the traditional empirical formula, were used to produce a contour map of the distribution of these characteristics. This enabled areas to be classified according to various safety factors. Originality/value On the basis of the water richness in the area, coal-roof aquifers and the safety factors of different districts, as well as comprehensive coal-roof water-flow conditions and their associated dangers could be better understood.

2012 ◽  
Vol 204-208 ◽  
pp. 3-9
Author(s):  
Qi Lang Le

Based on the research of interlayer-gliding structures in Panbei and Panji No.1 coal mine that are located in the each wing of Panji anticline, the Panji mining area is divided into 9 main interlayer-gliding areas and 29 sub-regions. The results indicate that the interlayer-gliding structures mainly developed in the anticline wings, which show obvious symmetry at the type and distribution. The types of the interlayer-gliding structures are fault-sliding and corrugation type in the wings and fracture type in the core area. The type and manifestation of the interlayer-gliding structures also show symmetry in the similar depth. From up to down, the interlayer-gliding type show obvious regularity that fracture type is mainly developed in the shallow area, down is fault-sliding type and corrugation type is mainly developed in the deep or the interchange of the faults. Take fuzzy comprehensive evaluation method to evaluate the inter-gliding structure in west area of Panji No.1 coal mine. The results showed that the results from using fuzzy comprehensive assessment were similar with the results exposed by coal mine. Good effects were obtained for predicting the development intensity of the seam-gliding structure in deep unmined areas in combination with geological conditions of coal mine, providing references for production arrangement of coal mine.


2019 ◽  
Vol 98 ◽  
pp. 01034 ◽  
Author(s):  
Mingjun Liu ◽  
Changlai Xiao ◽  
Xiujuan Liang

In this study, a hydrochemical investigation was conducted in Shuangliao city to identify the hydrochemical characteristics and the quality of groundwater using descriptive statistics and correlation matrices. And on that basis, combined with Analytic hierarchy process (AHP), an improved two-level fuzzy comprehensive evaluation method is used to evaluate the groundwater quality. The results indicate that the major cations and anions in groundwater are Ca2+ and HCO3-, respectively. The chemical types are mainly HCO3—Ca type water, some areas are complicated due to the influence of human activities. The evaluation results show that the water quality in the area is mostly III type water, and the groundwater quality in some areas is IV or V water due to the influence of primary geological conditions or human activities. The groundwater quality in the East Liaohe River Valley and Shuangliao urban area is relatively poor, and in the northwest part which is the saline alkali soil area is also relatively poor.


2012 ◽  
Vol 594-597 ◽  
pp. 1338-1342
Author(s):  
Qing Hai Li ◽  
Ren Shu Yang ◽  
Wei Ping Shi

In first mine of Chagannaoer, 2# coal seam, the mainly mined out layer, was 22.00m thickness in average. In order to meet the requirements of production ability, the mine was planned to apply mining technology of fully mechanized caving. Good or bad of top coal’s caving was an important prerequisite which decided the mining technology of top coal caving could be chosen or not. Due to lack of producing mines in this region and no experience to refer, we simulated the mining process of 2# coal seam using numerical software of FLAC3D, and gained evolution laws of stress and displacement of top coal and overlying strata and expansion laws of plastic zone. Through analysis, we got that the top coal damaged seriously and the top coal could be caved smoothly. Relying on the geological conditions of site, we verified the simulated results with method of fuzzy comprehensive evaluation. Combined with the research results, we decided that 2# coal seam’s caving was better and was convenient for top coal caving, so it was suitable for caving mining in 2# coal seam in first mine of Chagannaoer.


2012 ◽  
Vol 182-183 ◽  
pp. 644-648
Author(s):  
Wei Feng Yang ◽  
Ding Yi Shen ◽  
Yu Bing Ji ◽  
Yi Wang

Through applying the background values of aquifer derived from fuzzy clustering analysis, a fuzzy comprehensive estimation model was developed for quick recognition of mine water inrush. Based on the hydrological-chemical analysis data of water samples which water bursting sources were known in Liliu mining area, Shanxi province, this paper presented that the hydrological-chemical characters of different aquifer was different, and established a sort of fuzzy comprehensive evaluation models of discriminating coal mine water bursting sources in Liliu mining area. Applied to a production mine, the correct rate of water bursting source judged results by various methods was more than 70%. With the dispersion method and the method extracted from stepwise discrimination analysis to determine the membership degree and Model 3 the type determined by various factors, the correct rate of water bursting source with comprehensive evaluation of combination of two methods was higher respectively 94.5% and 93.3%. The fuzzy system can efficiently and accurately discriminate the resource of water inrush for an unknown sample, and provide the decision basis for the safety production of the coal mine.


2022 ◽  
Vol 9 ◽  
Author(s):  
Feng Cai ◽  
Lingling Yang ◽  
Yuan Yuan ◽  
Farhad Taghizadeh-Hesary

Coal quality rating can help reduce greenhouse gas emissions, solving the global warming problem. It becomes more important as the carbon neutrality by the mid-21st century agreement is accepted by 195 countries, including China. In this paper, an improved fuzzy comprehensive evaluation method is introduced for coal quality rating. The data used in this work are of the Hostolgoi coalfield of the Xinjiang Province of China. Six industrial analysis indicators are determined as evaluation factors by taking the coal samples of different coal seam depths in the mining area. The super-standard multiple methods and the double-weight super-standard weighting method are combined to form a comprehensive weight. The results show that most of the coal samples of this coal mine are at grades I–II, and the overall coal is with good-quality stability. The evaluation results can improve the coal utilization efficiency and provide scientific guidance for evaluating and exploiting coal resources in coal geological exploration.


2019 ◽  
Vol 13 (1) ◽  
pp. 183-195
Author(s):  
Dongxiao Niu ◽  
Weibo Zhao ◽  
Zongyun Song

Purpose There are thousands of areas excluded from using electrical energy in China. It is mainly because that these places, which are away from towns, have the characteristics of scattered living and low-power consumption and are difficult to construct the power grid. The utilization of energy in remote areas could improve the level of education and quality of life for people living in there, which has great social significance. However, how to choose the optimal power generation model quantitatively according to local energy advantages is a difficult problem. Design/methodology/approach To carry out a better assessment of the energy benefits of Chinese rural areas to assist the decision-making of energy utilization project, this paper takes Sunan Yugu Autonomous County in Gansu Province as an example. Four feasible energy utilization scenarios are proposed by analyzing its geographical conditions and re-source advantage, respectively, are photovoltaic power generation, biomass power generation, wind power generation and power grid extension. Based on the above scenarios, the evaluation index system of comprehensive utilization of energy in remote areas is constructed, and the comprehensive benefit of each model is evaluated by adopting entropy-based fuzzy comprehensive evaluation model. Findings Evaluation results show that the comprehensive benefits of photovoltaic power generation is the best, followed by power grid extension. Thus, preference should be given to the two models in the energy utilization in Sunan County. This evaluation model can provide a scientific reference for the selection decision-making of energy utilization project, which is helpful to provide the feasibility and efficiency of the construction of energy utilization project. Originality/value The authors construct the comprehensive benefit evaluation index system and evaluate the comprehensive benefits of different scenarios are by using entropy - fuzzy comprehensive evaluation model. Then the qualitative problem can be analyzed quantitatively. The purpose of this study is to support the decision-making of energy investment. Simultaneously, the paper also has some practical significance in improving the credibility of the government and the quality of local people’s life.


Author(s):  
Dongmei Huang ◽  
Weijun Li ◽  
Xikun Chang ◽  
Yunliang Tan

In order to evaluate the stability of deep surrounding rock, all of the affecting factors should be theoretically identified. However, some factors have slight impacts on the stability of deep surrounding rock compared with others. To conduct an effective risk assessment, key factors should be first extracted. The analytic hierarchy process (AHP) and grey relation analysis (GRA) methods are integrated to determine the key factors. First, the AHP method is applied to sort the factors by calculating the weights of them. Seven out of fifteen factors are extracted as the key factors, which account for 80% of the weights. Further, the GCA method is used to validate the effects of these key factors by analyzing the correlation between the performance of each factor and that of the reference. Considering the influence of these key factors and experts’ judgements, the multilevel fuzzy comprehensive evaluation method is adopted to obtain the risk level of the deep surrounding rock stability. Finally, the risk assessment of the deep surrounding rock in the E-Zhuang coal mine of Chinese Xinwen Mining Area illustrates the operability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document