The inverse problem in electroretinography: a study based on skin potentials and a realistic geometry model

1997 ◽  
Vol 44 (2) ◽  
pp. 209-211 ◽  
Author(s):  
N.H. van Schijndel ◽  
J.M. Thijssen ◽  
T.F. Oostendorp ◽  
M.H.M. Cuypers ◽  
G.J.M. Huiskamp
2018 ◽  
Vol 53 (4) ◽  
pp. 475-487 ◽  
Author(s):  
Guodong Fang ◽  
Chenghua Chen ◽  
Songhe Meng ◽  
Jun Liang

The elastic and failure analysis of three-dimensional braided composites is conducted by using realistic geometry model with local mesh refinement. The realistic geometry model is reconstructed by using micro computed tomography images. The voxel meshes are utilized to overcome the difficulties of mesh discretization for realistic geometry model of three-dimensional braided composites with complex meso-geometrical configurations. In order to improve the computational efficiency, the local voxel meshes at the braid yarn boundaries are refined to capture the detailed geometries of braid yarn and reduce the number of mesh. The stress averaging technique is applied to alleviate the local artificial stress spurious introduced from voxel meshes at braid yarn boundaries. Three kinds of computation models are used to predict the tensile properties of the braided composites, which are also compared with experimental results. The effects of braid yarn twist angle and mesh sizes on the predicted tensile behavior of the braided composites are studied further. A systematic way is provided to analyze mechanical properties of three-dimensional braided composites by using realistic voxel-based model.


1982 ◽  
Vol 2 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Dexing Feng ◽  
Guangtian Zhu
Keyword(s):  

2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document