Equivalent lumped elements G, L, C, and unloaded Q's of closed- and open-loop ring resonators

2002 ◽  
Vol 50 (2) ◽  
pp. 453-460 ◽  
Author(s):  
Lung-Hwa Hsieh ◽  
Kai Chang
2010 ◽  
Vol 52 (3) ◽  
pp. 523-526 ◽  
Author(s):  
Xin Lai ◽  
Bian Wu ◽  
Tao Su ◽  
Chang-Hong Liang

2017 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
A. Boutejdar ◽  
M. Challal ◽  
S. D. Bennani ◽  
F. Mouhouche ◽  
K. Djafri

In this Article, a novel quadruple-band microstrip patch antenna is proposed for the systems operating at quad-band applications. The antenna structure is composed of modified rectangular patch antenna with a U-shaped defected ground structure (DGS) unit and two parasitic elements (open-loop-ring resonators) to serve as a coupling-bridge. The proposed antenna with a total size of 31×33 mm2 is fabricated and tested. The measured result indicates that the designed antenna has impedance bandwidths for 10 dB return loss reach about 180 MHz (4.4–4.58 GHz), 200 MHz (5.4–5.6 GHz), 1100 MHz (7.2–8.3 GHz), and 700 MHz (9.6–10.3 GHz), which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C and X bands applications. Good agreement is obtained between measurement and simulation results.


2015 ◽  
Vol 58 (1) ◽  
pp. 106-110
Author(s):  
Osama M. Haraz ◽  
Nadeem Ashraf ◽  
Sultan Almorqi ◽  
Hussein Shaman ◽  
Saleh A. Alshebeili ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Chia-Mao Chen ◽  
Shoou-Jinn Chang ◽  
Yen-Liang Pan ◽  
Cheng-Yi Chen ◽  
Cheng-Fu Yang

A new type of balun-bandpass filter was proposed based on the traditional coupled-line theory and folded open-loop ring resonators (OLRRs) configuration. For that, a new device with both filter-type and balun-type characteristics was investigated and fabricated. Both magnetic and electric coupling structures were implemented to provide high performance balun-bandpass responses. The fabricated balun-bandpass filters had a wide bandwidth more than 200 MHz and a low insertion loss less than 2.51 dB at a center frequency of 2.6 GHz. The differences between the two outputs were below 0.4 dB in magnitude and within 180 ± 7° in phase. Also, the balun-bandpass filter presented an excellent common-mode rejection ratio over 25 dB in the passband. An advanced design methodology had been adopted based on EM simulation for making these designed parameters of OLRRs, microstrip lines, and open stubs. The measured frequency responses agreed well with simulated ones.


2017 ◽  
Vol 6 (3) ◽  
pp. 18 ◽  
Author(s):  
A. Boutejdar ◽  
S. D. Bennani

In this paper, we proposed a compact C-open-loop ring resonator and its equivalent circuit. The second cascaded BSF are designed using this simple C-ring resonator. The double ring BPF consists of two cascaded C-ring resonators, which are placed on the RO4003 substrate, while the other triple BSF structure consists of tree cascaded C-ring resonators, which are connected with input and output through microstrip feed lines. The both filters are simulated, optimized and partially realized using MWR simulator and Anritsu E5072A vector network analyzer VNA. In order to reduce the size and to improve the filter characteristics, novel compact filter topologies are designed basing on the previous structures. The proposed multi-band bandstop filters consist of several open-loop ring resonators placed vertically overlapping (coupled multi-armed ring resonator). Using this idea, the filter topologies with design flexibility, close size and excellent results are reached. The novel compact multi-band bandstop filters produce several stopband along a frequency range from DC to 9 GHz, in which each separate band exhibits an acceptable and useful bandwidth. Each stopband has regenerated two reflexion zeros, what leads to a good sharpness factors in the transition domains. Good agreement between the experimental results, full-wave simulation has been achieved. This new filter idea can be very attractive for the nowadays multilayer and compact radio frequency integrated circuit design.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chia-Mao Chen ◽  
Shoou-Jinn Chang ◽  
Sung-Mao Wu ◽  
Yuan-Tai Hsieh ◽  
Cheng-Fu Yang

A balun-bandpass filter was proposed by using two folded open-loop ring resonators (OLRRs) to couple three microstrip lines. By tuning the size of the OLRR, the operating frequency of the balun-bandpass filter could be tuned to the needed value. By tuning the size of open stub at the end of microstrip lines, the balanced impedance of the balun-bandpass filter could also be tuned. The fabricated balun-bandpass filter had a wide bandwidth and a low insertion loss at center frequency of the passband. The balun-bandpass filter presented an excellent in-band balanced performance with common-mode rejection ratio more than 20 dB in the passbands. An advanced design methodology had been adopted based on EM simulation for making these designed parameters of OLRRs and microstrip lines. Good correlation was seen between simulation and measurement, and the result was that first run pass had been achieved in the majority of our designs.


Sign in / Sign up

Export Citation Format

Share Document