Generating test-cases from an object-oriented model with an artifical-intelligence planning system

2000 ◽  
Vol 49 (1) ◽  
pp. 26-36 ◽  
Author(s):  
A. Von Mayrhauser ◽  
R. France ◽  
M. Scheetz ◽  
E. Dahlman

Test case prioritization (TCP) is a software testing technique that finds an ideal ordering of test cases for regression testing, so that testers can obtain the maximum benefit of their test suite, even if the testing process is stop at some arbitrary point. The recent trend of software development uses OO paradigm. This paper proposed a cost-cognizant TCP approach for object-oriented software that uses path-based integration testing. Path-based integration testing will identify the possible execution path and extract these paths from the Java System Dependence Graph (JSDG) model of the source code using forward slicing technique. Afterward evolutionary algorithm (EA) was employed to prioritize test cases based on the severity detection per unit cost for each of the dependent faults. The proposed technique was known as Evolutionary Cost-Cognizant Regression Test Case Prioritization (ECRTP) and being implemented as regression testing approach for experiment.


Author(s):  
Sudhir Kumar Mohapatra ◽  
Srinivas Prasad

Software testing is one in all the vital stages of system development. In software development, developers continually depend upon testing to reveal bugs. Within the maintenance stage test suite size grow due to integration of new functionalities. Addition of latest technique force to make new test case which increase the cost of test suite. In regression testing new test case could also be added to the test suite throughout the entire testing process. These additions of test cases produce risk of presence of redundant test cases. Because of limitation of time and resource, reduction techniques should be accustomed determine and take away. Analysis shows that a set of the test case in a suit should satisfy all the test objectives that is named as representative set. Redundant test case increase the execution price of the test suite, in spite of NP-completeness of the problem there are few sensible reduction techniques are available. During this paper the previous GA primarily based technique proposed is improved to search out cost optimum representative set using ant colony optimization.


Author(s):  
James A. Stori ◽  
Paul K. Wright

Abstract Within the Integrated Design And Manufacturing Environment (IMADE), operation planning provides a mapping from geometric design primitives to machining operation sequences for manufacturing processes. Operation planning includes tool selection, machining parameter selection, and tool path generation. An object oriented approach to program structure is adopted, whereby features, operations and tools, inherit behaviors and attributes from the appropriate class-hierarchies for the part, the manufacturing operations, and tooling classes. A detailed example is presented illustrating the operation planning search algorithm. Scripts are generated by the individual machining operations for execution on a machine tool. Tooling information is maintained in an object-oriented database through the FAR libraries for Common LISP. Examples of particular process plans show that the inherent trade-offs between specified precision and machining time can be investigated. An Open Architecture Machine Tool (MOSAIC-PM) has been used to machine the parts created by the feature based design and planning system. The novel contributions of this paper relate to the demonstration of “seamless” links between, a) design, b) planning, and c) actual fabrication by milling.


Author(s):  
N. Gupta ◽  
D. Saini ◽  
H. Saini

Object-oriented programming consists of several different levels of abstraction, namely, the algorithmic level, class level, cluster level, and system level. In this article, we discuss a testing technique to generate test cases at class level for object-oriented programs. The formal object oriented class specification is used to develop a test model. This test model is based on finite state machine specification. The class specification and the test model is analyzed to select a set of test data for each method of the class, and finally the test cases can be generated using other testing techniques like finite-state testing or data-flow testing.


Author(s):  
Rajvir Singh ◽  
Anita Singhrova ◽  
Rajesh Bhatia

Detection of fault proneness classes helps software testers to generate effective class level test cases. In this article, a novel technique is presented for an optimized test case generation for ant-1.7 open source software. Class level object oriented (OO) metrics are considered as effective means to find fault proneness classes. The open source software ant-1.7 is considered for the evaluation of proposed techniques as a case study. The proposed mathematical model is the first of its kind generated using Weka open source software to select effective OO metrics. Effective and ineffective OO metrics are identified using feature selection techniques for generating test cases to cover fault proneness classes. In this methodology, only effective metrics are considered for assigning weights to test paths. The results indicate that the proposed methodology is effective and efficient as the average fault exposition potential of generated test cases is 90.16% and test cases execution time saving is 45.11%.


Author(s):  
Macario Polo ◽  
Mario Piattini

This chapter presents a new testing technique called “test-case mutation.” The idea is to apply a set of specific mutation operators to test cases for object-oriented software, which produces different versions of the original test cases. Then, the results of the original test case and of its corresponding mutants are compared; if they are very similar, the technique highlights the possible presence of a fault in the class under test. The technique seems useful for testing the correctness of strongly constrained classes. The authors have implemented a supporting tool that is also described in the chapter.


2010 ◽  
Vol 10 (4-6) ◽  
pp. 659-674 ◽  
Author(s):  
MIGUEL GÓMEZ-ZAMALLOA ◽  
ELVIRA ALBERT ◽  
GERMÁN PUEBLA

AbstractTesting is a vital part of the software development process. Test Case Generation (TCG) is the process of automatically generating a collection of test-cases which are applied to a system under test. White-box TCG is usually performed by means of symbolic execution, i.e., instead of executing the program on normal values (e.g., numbers), the program is executed on symbolic values representing arbitrary values. When dealing with an object-oriented (OO) imperative language, symbolic execution becomes challenging as, among other things, it must be able to backtrack, complex heap-allocated data structures should be created during the TCG process and features like inheritance, virtual invocations and exceptions have to be taken into account. Due to its inherent symbolic execution mechanism, we pursue in this paper that Constraint Logic Programming (CLP) has a promising application field in tcg. We will support our claim by developing a fully CLP-based framework to TCG of an OO imperative language, and by assessing it on a corresponding implementation on a set of challenging Java programs.


Sign in / Sign up

Export Citation Format

Share Document