Waiting time and queue length distributions for go-back-N and selective-repeat ARQ protocols

1993 ◽  
Vol 41 (11) ◽  
pp. 1687-1693 ◽  
Author(s):  
M. Yoshimoto ◽  
T. Takine ◽  
Y. Takahashi ◽  
T. Hasegawa
Keyword(s):  
1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


2020 ◽  
Vol 9 (1) ◽  
pp. 63
Author(s):  
Joshua Patterson ◽  
Andrzej Korzeniowski

We use the stationary distribution for the M/M/1 with Unreliable Service and aWorking Vacation (M/M/1/US/WV) given explicitly in (Patterson & Korzeniowski, 2019) to find a decomposition of the stationary queue length N. By applying the distributional form of Little's Law the Laplace-tieltjes Transform of the stationary customer waiting time W is derived. The closed form of the expected value and variance for both N and W is found and the relationship of the expected stationary waiting time as a function of the service failure rate is determined.


Author(s):  
Rachel R. Chen ◽  
Subodha Kumar ◽  
Jaya Singhal ◽  
Kalyan Singhal

The (relative) cost of the customer’s waiting time has long been used as a key parameter in queuing models, but it can be difficult to estimate. A recent study introduced a new queue characteristic, the value of the customer’s waiting time, which measures how an increase in the total customer waiting time reduces the servers’ idle time. This paper connects and contrasts these two fundamental concepts in the queuing literature. In particular, we show that the value can be equal to the cost of waiting when the queue is operated at optimal. In this case, we can use the observed queue length to compute the value of waiting, which helps infer the cost of waiting. Nevertheless, these two measures have very different economic interpretations, and in general, they are not equal. For nonoptimal queues, comparing the value with the cost helps shed light on the underlying causes of the customer’s waiting. Although it is tempting to conclude that customers in a queue with a lower value of waiting expect to wait longer, we find that the value of waiting in general does not have a monotonic relationship with the expected waiting time, nor with the expected queue length.


1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


2020 ◽  
Vol 12 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Shahbaz Afzal ◽  
G. Kavitha

Among the different QoS metrics and parameters considered in cloud computing are the waiting time of cloud tasks, execution time of tasks in VM's, and the utilization rate of servers. The proposed model was developed to overcome some of the pitfalls in the existing systems among which are sub-optimal markdown in the queue length, waiting time, response time, and server utilization rate. The proposed model contemplates on the enhancement of these metrics using a Hybrid Multiple Parallel Queuing approach with a joint implementation of M/M/1: ∞ and M/M/s: N/FCFS to achieve the desired objectives. A neoteric set of mathematical equations have been formulated to validate the efficiency and performance of the hybrid queuing model. The results have been validated with reference to the workload traces of Bit Brains infrastructure provider. The results obtained indicate the significant reduction in the queue length by 60.93 percent, waiting time in the queue by 73.85 percent, and total response time by 97.51%.


1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1973 ◽  
Vol 5 (1) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


Sign in / Sign up

Export Citation Format

Share Document