A unified theory of nonlinear Langmuir waves, ion-acoustic solitons, and double layers

1991 ◽  
Vol 19 (4) ◽  
pp. 565-568 ◽  
Author(s):  
A.C.-L. Chian ◽  
R.F. Aragao
2004 ◽  
Vol 31 (1) ◽  
pp. 91-100 ◽  
Author(s):  
T. S. Gill ◽  
P. Bala ◽  
H. Kaur ◽  
N. S. Saini ◽  
S. Bansal ◽  
...  

2005 ◽  
Vol 71 (1) ◽  
pp. 23-34 ◽  
Author(s):  
TARSEM SINGH GILL ◽  
HARVINDER KAUR ◽  
NARESHPAL SINGH SAINI

The effect on the propagation of ion-acoustic solitons and double layers has been studied in collisionless weakly relativistic plasma consisting of two-electron temperature with isothermal electrons and finite ion temperature. The Korteweg de-Vries (KdV) equation is derived for ion-acoustic solitons propagating in a collisionless plasma. This equation is solved in a stationary frame to obtain the expression for soliton phase velocity, soliton width and peak soliton amplitude. It is observed that these quantities are significantly influenced by the relativistic effect, ion temperature, low-temperature electron density and ratio of cold to hot electron temperatures. Many features expected from hot ion theory and two species electron plasmas automatically emerge. The analysis is further extended to higher order nonlinearity and modified Korteweg de-Vries (mKdV) equation is derived. Even though compressive and rarefactive ion-acoustic solitons are obtained, only rarefactive ion-acoustic double layers are obtained in the present investigation.


2021 ◽  
Vol 76 (5) ◽  
pp. 455-468
Author(s):  
Sandip Dalui ◽  
Sankirtan Sardar ◽  
Anup Bandyopadhyay

Abstract Using Sagdeev pseudo-potential technique, we have studied the arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless plasma consisting of adiabatic warm ions, non-thermal hot electrons and isothermal cold electrons immersed in an external uniform static magnetic field. We have used the phase portraits of the dynamical system describing the non-linear behaviour of ion acoustic waves to confirm the existence of different solitary structures. We have found that the system supports (a) positive potential solitons, (b) negative potential solitons, (c) coexistence of both positive and negative potential solitons, (d) negative potential double layers, (e) negative potential supersolitons and (f) positive potential supersolitons. Again, we have seen that the amplitude of the positive potential solitons decreases or increases with increasing n ch according to whether 0 < n c h < n c h ( c ) $0{< }{n}_{ch}{< }{n}_{ch}^{\left(c\right)}$ or n c h ( c ) < n c h ≤ 1 ${n}_{ch}^{\left(c\right)}{< }{n}_{ch}\le 1$ , where n c h ${n}_{ch}$ is the ratio of isothermal cold and non-thermal hot electron number densities, and n c h ( c ) ${n}_{ch}^{\left(c\right)}$ is a critical value of n ch . Also, we have seen that the amplitude of the positive potential solitons decreases with increasing β e , where β e is the non-thermal parameter. We have also investigated the transition of different negative potential solitary structures: negative potential soliton (before the formation of negative potential double layer) → negative potential double layer → negative potential supersoliton → negative potential soliton (after the formation of negative potential double layer) by considering the variation of θ only, where θ is angle between the direction of the external uniform static magnetic field and the direction of propagation of the ion acoustic wave.


Sign in / Sign up

Export Citation Format

Share Document