Task-specific optimal simultaneous kinematic, dynamic, and control design of high-performance robotic systems

1999 ◽  
Vol 4 (4) ◽  
pp. 387-395 ◽  
Author(s):  
J.S. Rastegar ◽  
Lidong Liu ◽  
D. Yin
Author(s):  
J. Rastegar ◽  
L. Liu ◽  
M. Mattice

Abstract An optimal simultaneous kinematic, dynamic and control design approach is proposed for high performance computer controlled machines such as robot manipulators. The approach is based on the Trajectory Pattern Method (TPM) and a fundamentally new design philosophy that such machines in general and ultra-high performance machines in particular must only be designed to perform a class or classes of motions effectively. In the proposed approach, given the structure of the manipulator, its kinematic, dynamic and control parameters are optimized simultaneously with the parameters that describe the selected trajectory pattern. In the example presented in this paper, a weighted sum of the norms of the higher harmonics appearing in the actuating torques and the integral of the position and velocity tracking errors are used to form the optimality criterion. The selected optimality criterion should yield a system that is optimally designed to accurately follow the specified trajectory at high speed. Other objective functions can be readily formulated to synthesize systems for optimal performance. The potentials of the developed method and its implementation for generally defined motion patterns are discussed.


Author(s):  
A. Zubizarreta ◽  
E. Portillo ◽  
I. Cabanes ◽  
M. Marcos ◽  
Ch. Pinto

Due to their high performance when executing high-speed and accurate tasks, parallel robots have became the focus of many researchers and companies. However, exploiting the full potential of these robots requires a correct mechatronic design, in which the designed mechanism has to be controlled by a suitable control law in order to achieve the maximum performance. In this paper a novel Validation and Control Environment (VALIDBOT) is proposed as a support for the control design and experimental testing stages of these robots. The proposed open and flexible environment is designed to meet rapid prototyping requirements, offering a high level framework for both students and researchers. The capabilities of the environment are illustrated with an application case based on a 5R parallel robot prototype in which a modified CTC controller is tested.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 65 ◽  
Author(s):  
Alessandro Mauri ◽  
Jacopo Lettori ◽  
Giovanni Fusi ◽  
Davide Fausti ◽  
Maurizio Mor ◽  
...  

Exoskeleton robots are a rising technology in industrial contexts to assist humans in onerous applications. Mechanical and control design solutions are intensively investigated to achieve a high performance human-robot collaboration (e.g., transparency, ergonomics, safety, etc.). However, the most of the investigated solutions involve high-cost hardware, complex design solutions and standard actuation. Moreover, state-of-the-art empowering controllers do not allow for online assistance regulation and do not embed advanced safety rules. In the presented work, an industrial exoskeleton with high payload ratio for lifting and transportation of heavy parts is proposed. A low-cost mechanical design solution is described, exploiting compliant actuation at the shoulder joint to increase safety in human-robot cooperation. A hierarchic model-based controller with embedded safety rules is then proposed (including the modeling of the compliant actuator) to actively assist the human while executing the task. An inner optimal controller is proposed for trajectory tracking, while an outer safety-based fuzzy logic controller is proposed to online deform the task trajectory on the basis of the human’s intention of motion. A gain scheduler is also designed to calculate the inner optimal control gains on the basis of the performed trajectory. Simulations have been performed in order to validate the performance of the proposed device, showing promising results. The prototype is under realization.


2021 ◽  
Vol 11 (2) ◽  
pp. 7054-7059
Author(s):  
P. Vu ◽  
D. T. Anh ◽  
H. D. Chinh

This paper proposes a novel control design for a Current-Fed Dual Active Bridge (CFDAB) converter in boost mode. The Double PWM plus Double Phase Shifted (DPDPS) modulation is applied to the converter due to its considerable merits. A small-signal model is developed to control the output voltage stably in boost mode. Simulations of the control design for the CFDAB converter were conducted to verify the proposed model. The results show that the system can achieve high performance, not only in the dynamic response but also in the steady-state.


Author(s):  
Alessandro Mauri ◽  
Jacopo Lettori ◽  
Giovanni Fusi ◽  
Davide Fausti ◽  
Maurizio Mor ◽  
...  

Exoskeleton robots are a rising technology in industrial contexts to assist humans in onerous applications. Mechanical and control design solutions are intensively investigated to achieve a high performance human-robot collaboration (e.g., transparency, ergonomics, safety, etc.). However, the most of the investigated solutions involve high-cost hardware, complex design solutions and standard actuation. In the presented work, an industrial exoskeleton for lifting and transportation of heavy parts is proposed. A low-cost mechanical design solution is proposed, exploiting compliant actuation at the shoulder joint to increase safety and transparency in human-robot cooperation. A hierarchic model-based controller is then proposed (including the modeling of the compliant actuator) to actively assist the human while executing the task. An inner optimal controller is proposed for trajectory tracking, while an outer fuzzy logic controller is proposed to online deform the task trajectory on the basis of the human’s intention of motion. A gain scheduler is also designed to calculate the optimal control gains on the basis of the performed trajectory. Simulations have been performed in order to validate the performance of the proposed device, showing promising results. The prototype is under realization.


Sign in / Sign up

Export Citation Format

Share Document