Real-Time Validation and Control Environment for Parallel Robot Control Design

Author(s):  
A. Zubizarreta ◽  
E. Portillo ◽  
I. Cabanes ◽  
M. Marcos ◽  
Ch. Pinto

Due to their high performance when executing high-speed and accurate tasks, parallel robots have became the focus of many researchers and companies. However, exploiting the full potential of these robots requires a correct mechatronic design, in which the designed mechanism has to be controlled by a suitable control law in order to achieve the maximum performance. In this paper a novel Validation and Control Environment (VALIDBOT) is proposed as a support for the control design and experimental testing stages of these robots. The proposed open and flexible environment is designed to meet rapid prototyping requirements, offering a high level framework for both students and researchers. The capabilities of the environment are illustrated with an application case based on a 5R parallel robot prototype in which a modified CTC controller is tested.

2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


Author(s):  
J. Rastegar ◽  
L. Liu ◽  
M. Mattice

Abstract An optimal simultaneous kinematic, dynamic and control design approach is proposed for high performance computer controlled machines such as robot manipulators. The approach is based on the Trajectory Pattern Method (TPM) and a fundamentally new design philosophy that such machines in general and ultra-high performance machines in particular must only be designed to perform a class or classes of motions effectively. In the proposed approach, given the structure of the manipulator, its kinematic, dynamic and control parameters are optimized simultaneously with the parameters that describe the selected trajectory pattern. In the example presented in this paper, a weighted sum of the norms of the higher harmonics appearing in the actuating torques and the integral of the position and velocity tracking errors are used to form the optimality criterion. The selected optimality criterion should yield a system that is optimally designed to accurately follow the specified trajectory at high speed. Other objective functions can be readily formulated to synthesize systems for optimal performance. The potentials of the developed method and its implementation for generally defined motion patterns are discussed.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Qing Li

Due to the demands from the robotic industry, robot structures have evolved from serial to parallel. The control of parallel robots for high performance and high speed tasks has always been a challenge to control engineers. Following traditional control engineering approaches, it is possible to design advanced algorithms for parallel robot control. These approaches, however, may encounter problems such as heavy computational load and modeling errors, to name it a few. To avoid heavy computation, simplified dynamic models can be obtained by applying approximation techniques, nevertheless, performance accuracy will suffer due to modeling errors. This paper suggests applying an integrated design and control approach, i.e., the Design For Control (DFC) approach, to handle this problem. The underlying idea of the DFC approach can be illustrated as follows: Intuitively, a simple control algorithm can control a structure with a simple dynamic model quite well. Therefore, no matter how sophisticate a desired motion task is, if the mechanical structure is designed such that it results in a simple dynamic model, then, to design a controller for this system will not be a difficult issue. As such, complicated control design can be avoided, on-line computation load can be reduced and better control performance can be achieved. Through out the discussion in the paper, a 2 DOF parallel robot is redesigned based on the DFC concept in order to obtain a simpler dynamic model based on a mass-balancing method. Then a simple PD controller can drive the robot to achieve accurate point-to-point tracking tasks. Theoretical analysis has proven that the simple PD control can guarantee a stable system. Experimental results have successfully demonstrated the effectiveness of this integrated design and control approach.


2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Wei Li ◽  
Jorge Angeles

A novel parallel robot, dubbed the SDelta, is the subject of this paper. SDelta is a simpler alternative to both the well-known Stewart–Gough platform (SGP) and current three-limb, full-mobility parallel robots, as it contains fewer components and all its motors are located on the base. This reduces the inertial load on the system, making it a good candidate for high-speed operations. SDelta features a symmetric structure; its forward-displacement analysis leads to a system of three quadratic equations in three unknowns, which admits up to eight solutions, or half the number of those admitted by the SGP. The kinematic analysis, undertaken with a geometrical method based on screw theory, leads to two Jacobian matrices, whose singularity conditions are investigated. Instead of using the determinant of a 6 × 6 matrix, we derive one simple expression that characterizes the singularity condition. This approach is also applicable to a large number of parallel robots whose six actuation wrench axes intersect pairwise, such as all three-limb parallel robots whose limbs include, each, a passive spherical joint. The workspace is analyzed via a geometric method, while the dexterity analysis is conducted via discretization. Both show that the given robot has the potential to offer both large workspace and good dexterity with a proper choice of design variables.


Author(s):  
John T. Cameron ◽  
Sean Brennan

This work presents results of an initial investigation into models and control strategies suitable to prevent vehicle rollover due to untripped driving maneuvers. Outside of industry, the study of vehicle rollover inclusive of both experimental validation and practical controller design is limited. The researcher interested in initiating study on rollover dynamics and control is left with the challenging task of identifying suitable vehicle models from the literature, comparing these models with experimental results, and determining suitable parameters for the models. This work addresses these issues via experimental testing of published models. Parameter estimation data based on model fits is presented, with commentary given on the validity of different methods. Experimental results are then presented and compared to the output predicted by the various models in both the time and frequency domain in order to provide a foundation for future work.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


2015 ◽  
Author(s):  
Daniel James ◽  
Maurizio Collu

As high performance marine vessels with improved performance characteristics are being requested by governments (DARPA 2015) and commercial operators, the Aerodynamically Alleviated Marine Vehicle (AAMV) provides a solution that combines speeds typical of rotary-wing and light fixed-wing aircraft with payload and loitering ability found in current high speed craft. The innovative AAMV hybrid aero-marine platform utilizes an alternative implementation of wing-in-ground effect (WIG), a proven technology with a fascinating history of high speed marine operation. This paper outlines some challenges and the work completed towards the development of a hybrid class of vessel that is able to bridge the maritime-to-air domain, comfortably operating in the water surface yet still delivering the speed of aircraft during an airborne cruise phase. An overview of current WIG design is briefly presented, leading to the conceptual approach for the AAMV. Development and assessment of the aerodynamic properties of the lifting surfaces are shown, with analysis of several wing profiles and their effect on the total lift force, drag force, and pitching moment that directly influence the stability characteristics of the vehicle. A methodology for sizing an appropriate platform is summarized, along with experimental results of a high speed hullform with characteristics suitable for this intended application. Finally, particulars of a potential AAMV are derived using an iterative numerical method and briefly compared to current craft. For close to a century, the influence of ground effect has promised economy for low-skimming flight over smooth water (Raymond 1921), a promise that has yet to reach its full potential.


Author(s):  
M. Tai ◽  
J. Rastegar

Abstract An integrated structure and motion pattern specific design approach is proposed for optimal design of high speed and accuracy computer controlled machines including robots. The approach is based on the Trajectory Pattern Method (TPM). The current approach to the design of such machines is to assume that the machine will be required to perform more or less any arbitrary and often unrealistic tasks. This assumption nearly always leads to designs based on the worst operating conditions. The proposed trajectory pattern based design methodology presented in this paper stems from a fundamentally new design philosophy. The philosophy behind the proposed approach is that machines in general and ultra-high performance machines in particular must only be designed to perform a class or classes of motions effectively. And that trajectory patterns, i.e., classes of parametric trajectories, exist with which high speed motions can be synthesized with minimal ensuing vibration and control problems. In the proposed approach, given the kinematic structure of the machine, its kinematic and dynamic parameters are optimized simultaneously with the parameters that describe a selected trajectory pattern. The controller parameters may also be included as design variables. In the present study, the optimality criterion employed is based on minimizing the higher harmonic portion of the actuating forces (torques) required for performing the selected class(es) of motion patterns. Trajectories that do not demand high frequency actuating torque harmonics are desirable since they reduce vibration and control problems in high performance systems and reduce settling time. Examples of the application of the proposed approach are presented.


Sign in / Sign up

Export Citation Format

Share Document