Novel zero-current-switching (ZCS) PWM switch cell minimizing additional conduction loss

2002 ◽  
Vol 49 (1) ◽  
pp. 165-172 ◽  
Author(s):  
Hang-Seok Choi ◽  
Bo Hyung Cho
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6288
Author(s):  
Aline V. C. Pereira ◽  
Marcelo C. Cavalcanti ◽  
Gustavo M. Azevedo ◽  
Fabrício Bradaschia ◽  
Rafael C. Neto ◽  
...  

This paper introduces a single-switch, high step-up DC–DC converter for photovoltaic applications such as power optimizers and microinverters. The proposed converter employs two voltage multipliers cells with switched capacitor and magnetic coupling techniques to achieve high voltage gain. This feature, along with a passive clamp circuit, reduces the voltage stress across the switch, allowing for the employment of low RDSon MOSFET. This leads to low conduction loss of the switch. The diodes operate with zero-current switching at their turn-off transition, eliminating the reverse recovery losses. Additionally, the switch turns on with zero-current switching, leading to insignificant switching loss associated with its turn-on transition. The operation principle and steady-state analysis are presented and validated through experimental results obtained from a 140 W prototype of the proposed converter.


Sign in / Sign up

Export Citation Format

Share Document