conduction loss
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 77)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Sunita Saini ◽  
Davinder Singh Saini

Abstract Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series-parallel SC converter for a target load current of 2.67mA implemented on a 22nm technology node. Results show that a minimum of 250MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1554
Author(s):  
Na Zhou ◽  
Xuefeng Ding ◽  
Hongbo Li ◽  
Yue Ni ◽  
Yonglong Pu ◽  
...  

A thermopile detector with their thermocouples distributed in micro-bridges is designed and investigated in this work. The thermopile detector consists of 16 pairs of n-poly-Si/p-poly-Si thermocouples, which are fabricated using a low-cost, high-throughput CMOS process. The micro-bridges are realized by forming micro trenches at the front side first and then releasing the silicon substrate at the back side. Compared with a thermopile device using a continuous membrane, the micro-bridge-based one can achieve an improvement of the output voltage by 13.8% due to a higher temperature difference between the hot and cold junctions as there is a decrease in thermal conduction loss in the partially hollowed structure. This technique provides an effective way for developing high-performance thermopile detectors and other thermal devices.


Author(s):  
Mengyuan Hua ◽  
Junting Chen ◽  
Chengcai Wang ◽  
Lingling Li ◽  
Ling Liu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2588
Author(s):  
Sen-Tung Wu ◽  
Yu-Ting Cheng

This paper proposes an AC/DC single-stage structure by integrating a boost topology and an active clamp flyback (ACF) circuit with power-factor-correction (PFC) function. The PFC function can be achieved by controlling a boost PFC topology operated in the discontinuous conduction mode. With the coordination of active clamping components, a resonant technique is obtained and zero-voltage-switching (ZVS) can be achieved. The proposed converter is combined with the advantages of: (1) compared with two-stage circuit, a single stage circuit decreases the component of the main circuit and reduces the complexity of the control circuit; (2) a boost topology with PFC function operated in discontinuous conduction mode can be accomplished without adding any current detecting technique or detecting input signal; (3) by using the inductor from the PFC stage, ZVS function can be achieved without any additional inductor; (4) the increment of switching frequency facilitates the optimization of power density; (5) the conducting loss at the secondary side can be reduced by adding the synchronous rectification; (6) in this proposed scheme, the dual transformers with series-parallel connection are utilized, the current at the secondary side can be shared for lowering the conduction loss of the synchronous transistors. Finally, a prototype converter with AC 110 V input and DC 19 V/6.32 A (120 W) output under 300 kHz switching frequency is implemented. The efficiency of the proposed converter reaches 88.20% and 0.984 power factor in full load condition.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6288
Author(s):  
Aline V. C. Pereira ◽  
Marcelo C. Cavalcanti ◽  
Gustavo M. Azevedo ◽  
Fabrício Bradaschia ◽  
Rafael C. Neto ◽  
...  

This paper introduces a single-switch, high step-up DC–DC converter for photovoltaic applications such as power optimizers and microinverters. The proposed converter employs two voltage multipliers cells with switched capacitor and magnetic coupling techniques to achieve high voltage gain. This feature, along with a passive clamp circuit, reduces the voltage stress across the switch, allowing for the employment of low RDSon MOSFET. This leads to low conduction loss of the switch. The diodes operate with zero-current switching at their turn-off transition, eliminating the reverse recovery losses. Additionally, the switch turns on with zero-current switching, leading to insignificant switching loss associated with its turn-on transition. The operation principle and steady-state analysis are presented and validated through experimental results obtained from a 140 W prototype of the proposed converter.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5969
Author(s):  
Kui-Jun Lee

Since a T-type three-level PWM converter has several advantages in terms of harmonics and conduction loss, it has been widely adopted for various low voltage applications. However, a neutral point voltage control is necessarily required for stable system operation, and an offset voltage can effectively provide the required neutral point current under unbalanced load conditions. Nevertheless, all types of unbalanced loads cannot be accommodated; in other words, there is a limitation on how much unbalanced load conditions can be allowed. Therefore, this paper analyzed the maximum allowable unbalanced load conditions in the T-type three-level PWM converter. This result can be properly utilized for an effective design verification considering unbalanced load conditions as well as a comprehensive approach for the stable system operation. The feasibility of the analytical result is verified through simulation and experimental tests.


Sign in / Sign up

Export Citation Format

Share Document