Levelized incomplete LU factorization and its application to large-scale circuit simulation

Author(s):  
K.-M. Eickhoff ◽  
W.L. Engl
Acta Numerica ◽  
2003 ◽  
Vol 12 ◽  
pp. 267-319 ◽  
Author(s):  
Roland W. Freund

In recent years, reduced-order modelling techniques based on Krylov-subspace iterations, especially the Lanczos algorithm and the Arnoldi process, have become popular tools for tackling the large-scale time-invariant linear dynamical systems that arise in the simulation of electronic circuits. This paper reviews the main ideas of reduced-order modelling techniques based on Krylov subspaces and describes some applications of reduced-order modelling in circuit simulation.


2018 ◽  
Vol 10 (10) ◽  
pp. 1850108 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main aim of this paper is to propose a new boundary element algorithm for describing thermomechanical interactions in anisotropic soft tissues. The governing equations are studied based on the dual-phase lag bioheat transfer and Biot’s theory. Due to the advantages of convolution quadrature boundary element method (CQBEM), such as low CPU usage, low memory usage and suitability for treatment of soft tissues that have complex shapes, it is a versatile and powerful method for modeling of bioheat distribution in anisotropic soft tissues and the related deformation. The resulting linear systems for bioheat and mechanical equations are solved by Transpose-free quasi-minimal residual (TFQMR) solver with a dual-threshold incomplete LU factorization technique (ILUT) preconditioner that reduces the iterations number and total CPU time. Numerical results demonstrate the validity, efficiency and accuracy of the proposed algorithm and technique.


Author(s):  
H. Yoshida ◽  
S. Kumagai ◽  
I. Shirakawa ◽  
S. Kodama

Sign in / Sign up

Export Citation Format

Share Document