Adaptive estimation of power system frequency deviation and its rate of change for calculating sudden power system overloads

1990 ◽  
Vol 5 (2) ◽  
pp. 585-594 ◽  
Author(s):  
A.A. Girgis ◽  
W.L. Peterson
2013 ◽  
Vol 291-294 ◽  
pp. 407-414 ◽  
Author(s):  
Guo Peng Zhou ◽  
Fu Feng Miao ◽  
Xi Sheng Tang ◽  
Tao Wu ◽  
Shan Ying Li ◽  
...  

The output power of wind farms has significant randomness and variability, which results in adverse impacts on power system frequency stability. This paper extracts wind power fluctuation feature with the HHT (Hilbert-Huang Transform) method. Firstly, the original wind power data was decomposed into several IMFs (Intrinsic Mode Functions) and a tendency component by using the EMD (Empirical Mode Decomposition) method. Secondly, the instantaneous frequency of each IMF was calculated. On this basis, taking a WSCC 9-bus power system as benchmark, the impact on power system frequency caused by wind power fluctuation was simulated in a real-time simulation platform, and the key component which results in the frequency deviation was found. The simulation results validate the wind power fluctuation impacts on frequency deviation, underlying the following study on power system frequency stability under the situation of large-scale intermittent generation access into the grid.


2017 ◽  
Vol 201 (1) ◽  
pp. 13-24
Author(s):  
JUNJI TAMURA ◽  
KAZUKI KAWAMATA ◽  
RION TAKAHASHI ◽  
ATSUSHI UMEMURA ◽  
MAMORU KIMURA ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8132
Author(s):  
Jun Wang ◽  
Yien Xu ◽  
Xiaoxin Wu ◽  
Jiejie Huang ◽  
Xinsong Zhang ◽  
...  

An inertial response emulated control strategy of doubly-fed induction generators (DFIGs) is able to arrest their frequency decline following a severe frequency event. Nevertheless, the control coefficient is unchanged, so as to limit the benefit potentiality of improving the inertial response capability for various disturbances and provide less of a benefit for boosting the frequency nadir. This paper addresses an enhanced inertial response emulated control scheme for a DFIG to improve the maximum frequency deviation and maximum rate of change of frequency for various disturbances. To this end, the control coefficient is coupled with the system frequency deviation so as to regulate the control coefficient according to the system frequency deviation (i.e., sizes of the disturbance). Results clearly indicate that the proposed inertial response emulated control strategy provides better performance in terms of improving the maximum rate of change of frequency and maximum frequency deviation under various sizes of disturbance and random wind speed conditions.


2022 ◽  
Author(s):  
Huisheng Gao ◽  
Huanhai Xin ◽  
Linbin Huang ◽  
Zhiyi Li ◽  
Wei Huang ◽  
...  

<p>As synchronous generators (SGs) are extensively replaced by inverter-based generators (IBGs), modern power systems are facing complicated frequency stability problems. Conventionally, the frequency nadir and the rate of change of frequency (RoCoF) are the two main factors concerned by power system operators. However, these two factors heavily rely on simulations or experiments, especially in a power system with high-penetration IBGs, which offer limited theoretical insight into how the frequency response characteristics are affected by the devices. This paper aims at filling this gap. Firstly, we derive a formulation of the global frequency for an IBG-penetrated power system, referred to as common-mode frequency (CMF). The derived CMF is demonstrated to be more accurate than existing frequency definitions, e.g., the average system frequency (ASF). Then, a unified transfer function structure (UTFS) is proposed to approximate the frequency responses of different types of devices by focusing on three key parameters<a>, which dramatically reduces the complexity of frequency analysis. </a>On this basis, we introduce two evaluation indices, i.e., frequency drop depth coefficient (FDDC) and frequency drop slope coefficient (FDSC), to theoretically quantify the frequency nadir and the average RoCoF, respectively. Instead of relying on simulations or experiments, our method rigorously links the system’s frequency characteristics to the characteristics of heterogeneous devices, which enables an in-depth understanding regarding how devices affect the system frequency. Finally, the proposed indices are verified through simulations on a modified IEEE 39-bus test system. </p>


2015 ◽  
Vol 135 (4) ◽  
pp. 224-232
Author(s):  
Junji Tamura ◽  
Kazuki Kawamata ◽  
Rion Takahashi ◽  
Atsushi Umemura ◽  
Mamoru Kimura ◽  
...  

2013 ◽  
Vol 133 (9) ◽  
pp. 723-724 ◽  
Author(s):  
Junji Tamura ◽  
Kazuki Kawamata ◽  
Rion Takahashi ◽  
Atsushi Umemura

Sign in / Sign up

Export Citation Format

Share Document