Superconducting linear synchronous motor for urban transport system

1995 ◽  
Vol 5 (2) ◽  
pp. 453-456 ◽  
Author(s):  
D.G. Pinatti ◽  
T.M. Souza ◽  
C.Y. Shigue
2007 ◽  
Author(s):  
Tsuyoshi Higuchi ◽  
Takashi Abe ◽  
Jun Oyama ◽  
Takashi Yoshida ◽  
Tadashi Hirayama

2018 ◽  
Vol 4 (2) ◽  
pp. 107-119
Author(s):  
Maurizio Cavagnaro ◽  
Vincenzo Delle Site

Aim: The aim of our project is to solve all technological and functional problems related to the development of the suspended urban Maglev, while maintaining the requirement of simplicity and low cost of construction, operation and maintenance. Both the infrastructure and the vehicle are designed to be industrially produced and assembled on site. Methods of the studies: Our study is based on the theoretical and experimental results obtained during a project of the Italian National Research Council, concerning the performances of opposing permanent magnets, the design of the linear synchronous motor and the possible solutions for realizing the guidance system. On the basis of these results the study of the suspended system was carried out. Results: The paper describes the suspended urban Maglev with PM/PM primary suspension (with opposing permanent magnets) and proposes a mechanical guidance system that uses for stabilization the same repulsive forces between permanent magnets. We also propose a new configuration with HTS/PM primary suspension (with high temperature superconductors opposed to permanent magnets), evaluating pros and cons of this solution. Finally we provide design data on the linear synchronous motor suitable for our system. Conclusion: This paper describes our proposal for a suspended urban Maglev using permanent magnets; our interest focuses on the need to further develop industrially feasible solutions, easy to build and manage, in order to propose a system that is also commercially viable and competitive. The identified advantages justify further studies.


2012 ◽  
Vol 132 (4) ◽  
pp. 480-486 ◽  
Author(s):  
Masanobu Kakihara ◽  
Toshiyuki Hoshi ◽  
Toru Shikayama ◽  
Motomichi Ohto

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yinhao Mao ◽  
Zhaolong Sun ◽  
Weichang Zhou ◽  
Zhexin Zhuang ◽  
Hanning Qian

Author(s):  
Xiaolei Shi ◽  
Yipeng Lan ◽  
Yunpeng Sun ◽  
Cheng Lei

This paper presents a sliding mode observer (SMO) with new reaching law (NRL) for observing the real-time linear speed of a controllable excitation linear synchronous motor (CELSM). For the purpose of balancing the dilemma between the rapidity requirement of dynamic performance and the chattering reduction on sliding mode surface, the proposed SMO with NRL optimizes the reaching way of the conventional constant rate reaching law (CRRL) to the sliding mode surface by connecting the reaching process with system states and the sliding mode surface. The NRL is based on sigmoid function and power function, with proper options of exponential term and power term, the NRL is capable of eliminating the effect of chattering on accuracy of the angular position estimation and speed estimation. Compared with conventional CRRL, the SMO with NRL achieves suppressing the chattering phenomenon and tracking the transient process rapidly and accurately. The stability analysis is given to prove the convergence of the SMO through the Lyapunov stability theory. Simulation and experimental results show the effectiveness of the proposed NRL method.


Sign in / Sign up

Export Citation Format

Share Document