scholarly journals Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication

Author(s):  
Tao Yang ◽  
L.O. Chua
2011 ◽  
Vol 282-283 ◽  
pp. 612-615
Author(s):  
Ying Kui Li

Most properties of Super Chen’s chaotic system satisfy with the requirements of secure communication and cryptography. Implusive stabilzation for control and synchronization of Super Chen’s chaotic systems can be applied in secure communication. Super Chen’s Chaotic synchronization control can be the kernel technology in chaos-based secure commu-nication. In this paper we propose a hybrid Super Chen chaotic synchronization scheme control which contains both continuous chaotic system with a sort of oscillating parameters and discrete chaotic system. If oscillating parameters approach to 0, we proved that two systems can get synchronized without control signal transmitting.


2010 ◽  
Vol 20 (1) ◽  
pp. 229-237 ◽  
Author(s):  
Jui-Sheng Lin ◽  
Cheng-Fang Huang ◽  
Teh-Lu Liao ◽  
Jun-Juh Yan

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2022 ◽  
Author(s):  
Wenhao Yan ◽  
Zijing Jiang ◽  
Qun Ding

Abstract The physical implementation of continuoustime memristor makes it widely used in chaotic circuits, whereas discrete-time memristor has not received much attention. In this paper, the backward-Euler method is used to discretize TiO2 memristor model, and the discretized model also meets the three fingerprinter characteristics of the generalized memristor. The short period phenomenon and uneven output distribution of one-dimensional chaotic systems affect their applications in some fields, so it is necessary to improve the dynamic characteristics of one-dimensional chaotic systems. In this paper, a two-dimensional discrete-time memristor model is obtained by linear coupling the proposed TiO2 memristor model and one-dimensional chaotic systems. Since the two-dimensional model has infinite fixed points, the stability of these fixed points depends on the coupling parameters and the initial state of the discrete TiO2 memristor model. Furthermore, the dynamic characteristics of one-dimensional chaotic systems can be enhanced by the proposed method. Finally, we apply the generated chaotic sequence to secure communication.


Sign in / Sign up

Export Citation Format

Share Document