A new barrier function for IQC optimization problems

Author(s):  
C.-Y. Kao ◽  
A. Megretski
Author(s):  
Dávid Papp ◽  
Sercan Yıldız

We present alfonso, an open-source Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous self-concordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimization: [Formula: see text] iterations to reach an ε-optimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface is also available to optimize over the direct product of cones for which a barrier function has already been built into the software. This interface can be easily extended to include new cones. Both interfaces are illustrated by solving linear programs. The oracle interface and the efficiency of alfonso are also demonstrated using an optimal design of experiments problem in which the tailored barrier computation greatly decreases the solution time compared with using state-of-the-art, off-the-shelf conic optimization software. Summary of Contribution: The paper describes an open-source Matlab package for optimization over nonsymmetric cones. A particularly important feature of this software is that, unlike other conic optimization software, it enables optimization over any convex cone as long as a suitable barrier function is available for the cone or its dual, not limiting the user to a small number of specific cones. Nonsymmetric cones for which such barriers are already known include, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Thus, the scope of this software is far larger than most current conic optimization software. This does not come at the price of efficiency, as the worst-case iteration complexity of our algorithm matches the iteration complexity of the most successful interior-point methods for symmetric cones. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, our software can also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. This is also demonstrated in this paper via an example in which our code significantly outperforms Mosek 9 and SCS 2.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


2001 ◽  
Vol 120 (5) ◽  
pp. A109-A109
Author(s):  
I SIMONOVIC ◽  
M ARPIN ◽  
A KOUTSOURIS ◽  
G HECHT
Keyword(s):  

2001 ◽  
Vol 120 (5) ◽  
pp. A110-A110
Author(s):  
A HOPKINS ◽  
S WALS ◽  
P VERKADE ◽  
P BOQUET ◽  
A NUSRAT

Sign in / Sign up

Export Citation Format

Share Document