scholarly journals Alfonso: Matlab Package for Nonsymmetric Conic Optimization

Author(s):  
Dávid Papp ◽  
Sercan Yıldız

We present alfonso, an open-source Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous self-concordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimization: [Formula: see text] iterations to reach an ε-optimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface is also available to optimize over the direct product of cones for which a barrier function has already been built into the software. This interface can be easily extended to include new cones. Both interfaces are illustrated by solving linear programs. The oracle interface and the efficiency of alfonso are also demonstrated using an optimal design of experiments problem in which the tailored barrier computation greatly decreases the solution time compared with using state-of-the-art, off-the-shelf conic optimization software. Summary of Contribution: The paper describes an open-source Matlab package for optimization over nonsymmetric cones. A particularly important feature of this software is that, unlike other conic optimization software, it enables optimization over any convex cone as long as a suitable barrier function is available for the cone or its dual, not limiting the user to a small number of specific cones. Nonsymmetric cones for which such barriers are already known include, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Thus, the scope of this software is far larger than most current conic optimization software. This does not come at the price of efficiency, as the worst-case iteration complexity of our algorithm matches the iteration complexity of the most successful interior-point methods for symmetric cones. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, our software can also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. This is also demonstrated in this paper via an example in which our code significantly outperforms Mosek 9 and SCS 2.

2007 ◽  
Vol 19 (1) ◽  
pp. 258-282 ◽  
Author(s):  
Ping Zhong ◽  
Masao Fukushima

Multiclass classification is an important and ongoing research subject in machine learning. Current support vector methods for multiclass classification implicitly assume that the parameters in the optimization problems are known exactly. However, in practice, the parameters have perturbations since they are estimated from the training data, which are usually subject to measurement noise. In this article, we propose linear and nonlinear robust formulations for multiclass classification based on the M-SVM method. The preliminary numerical experiments confirm the robustness of the proposed method.


Author(s):  
Sicheng He ◽  
Mohammad Shahabsafa ◽  
Weiming Lei ◽  
Ali Mohammad-Nezhad ◽  
Tamás Terlaky ◽  
...  

2005 ◽  
Vol 128 (4) ◽  
pp. 874-883 ◽  
Author(s):  
Mian Li ◽  
Shapour Azarm ◽  
Art Boyars

We present a deterministic non-gradient based approach that uses robustness measures in multi-objective optimization problems where uncontrollable parameter variations cause variation in the objective and constraint values. The approach is applicable for cases that have discontinuous objective and constraint functions with respect to uncontrollable parameters, and can be used for objective or feasibility robust optimization, or both together. In our approach, the known parameter tolerance region maps into sensitivity regions in the objective and constraint spaces. The robustness measures are indices calculated, using an optimizer, from the sizes of the acceptable objective and constraint variation regions and from worst-case estimates of the sensitivity regions’ sizes, resulting in an outer-inner structure. Two examples provide comparisons of the new approach with a similar published approach that is applicable only with continuous functions. Both approaches work well with continuous functions. For discontinuous functions the new approach gives solutions near the nominal Pareto front; the earlier approach does not.


Author(s):  
Eliot Rudnick-Cohen ◽  
Jeffrey W. Herrmann ◽  
Shapour Azarm

Feasibility robust optimization techniques solve optimization problems with uncertain parameters that appear only in their constraint functions. Solving such problems requires finding an optimal solution that is feasible for all realizations of the uncertain parameters. This paper presents a new feasibility robust optimization approach involving uncertain parameters defined on continuous domains without any known probability distributions. The proposed approach integrates a new sampling-based scenario generation scheme with a new scenario reduction approach in order to solve feasibility robust optimization problems. An analysis of the computational cost of the proposed approach was performed to provide worst case bounds on its computational cost. The new proposed approach was applied to three test problems and compared against other scenario-based robust optimization approaches. A test was conducted on one of the test problems to demonstrate that the computational cost of the proposed approach does not significantly increase as additional uncertain parameters are introduced. The results show that the proposed approach converges to a robust solution faster than conventional robust optimization approaches that discretize the uncertain parameters.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450028 ◽  
Author(s):  
Behrouz Kheirfam

A corrector–predictor algorithm is proposed for solving semidefinite optimization problems. In each two steps, the algorithm uses the Nesterov–Todd directions. The algorithm produces a sequence of iterates in a neighborhood of the central path based on a new proximity measure. The predictor step uses line search schemes requiring the reduction of the duality gap, while the corrector step is used to restore the iterates to the neighborhood of the central path. Finally, the algorithm has [Formula: see text] iteration complexity.


Sign in / Sign up

Export Citation Format

Share Document