A robust dual-mode MPC approach to ensuring critical quality attributes in Quality-by-Design

Author(s):  
Eranda Harinath ◽  
Lucas C. Foguth ◽  
Richard D. Braatz
Biologicals ◽  
2016 ◽  
Vol 44 (5) ◽  
pp. 291-305 ◽  
Author(s):  
Nadja Alt ◽  
Taylor Y. Zhang ◽  
Paul Motchnik ◽  
Ron Taticek ◽  
Valerie Quarmby ◽  
...  

2021 ◽  
Author(s):  
Pankaj Sharma

In the novel dosage form development, quality is the key criterion in pharmaceutical industry. The quality by design tools used for development of the quality products with tight specification and rigid process. The specifications of statistical tools are essentially based upon critical process parameters (CPPs), critical material attributes (CMAs), and critical quality attributes (CQAs) for the development of quality products. The application of quality by design in pharmaceutical dosage form development is systematic, requiring multivariate experiments employing process analytical technology (PAT) and other experiments to recognize critical quality attributes depend upon risk assessments (RAs). The quality by design is a modern technique to stabilize the quality of pharmaceutical dosage form. The elements of quality by design such as process analytical techniques, risk assessment, and design of experiment support for assurance of the strategy control for every dosage form with a choice of regular monitoring and enhancement for a quality dosage form. This chapter represents the concepts and applications of the most common screening of designs/experiments, comparative experiments, response surface methodology, and regression analysis. The data collected from the dosage form designing during laboratory experiments, provide the substructure for pivotal or pilot scale development. Statistical tools help not only in understanding and identifying CMAs and CPPs in product designing, but also in comprehension of the role and relationship between these in attaining a target quality. Although, the implementation of statistical approaches in the development of dosage form is strongly recommended.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 3023-3032
Author(s):  
Manish Majumder ◽  
Ramesh B ◽  
Minaketan Tripathy

Quality by design guided. The assay method of Boceprevir is developed in accordance with ICH Q8(R2) guideline with due validation. .In this process, the Target analytical profile (TAP) of the drug was set and critical method parameters (CMP) were investigated by systematic risk assessment experimentation to control critical Quality Attributes (CQA). In this, A Cause Effect Risk Assessment Matrix with Control-Noise-Experiment (CNX) is used for identifying the high-risk variables i.e Percentage of Organic Modifier (% methanol), pH of the Buffer and flow rate of the mobile phase. The surface response methodology was applied to optimize the critical method parameters (CMP) as well as Critical Quality Attributes (CQA) to find out the Design space of the method. The Optimum assay method condition was mobile phase Acetate Buffer (50mM) pH 5.4: Methanol (11:89), Flow rate: 0.9 ml/min, Lambda Max: 207. The separation was achieved in the Eclip Plus C-18 column (250 × 4.6 mm, 5μm) at ambient temperature. The retention time of Boceprevir was found to be 4.2 min. The method evaluation was performed according to the (Q2R1) ICH guideline.


2014 ◽  
Vol 11 (3) ◽  
pp. 787-799 ◽  
Author(s):  
Ziyaur Rahman ◽  
Xiaoming Xu ◽  
Usha Katragadda ◽  
Yellela S. R. Krishnaiah ◽  
Lawrence Yu ◽  
...  

Author(s):  
Sundaramurthy Vivekanandan

Quality by design (QbD) is a systematic, scientific, risk-based approach to product development and manufacturing process to consistently deliver the quality product. In this chapter, application, benefits, opportunities, regulatory requirements involved in quality by design of pharmaceutical products are discussed. In quality by design approach, during development, the developer defines quality target product profile (QTPP) and identifies critical quality attributes (CQA). Critical process parameters (CPP) of unit operations which impacts critical quality attributes need to be identified to understand the impact of critical material attributes (CMA) on quality attributes of the drug product. Quality by design approach is defined in ICH guidelines Q8 – Pharmaceutical Development, Q9 – Quality Risk Management, Q10 – Pharmaceutical Quality System. This chapter describes the implementation of new concepts in quality by design like design of experiments to achieve design space, control strategy to consistently manufacture quality product throughout the product lifecycle.


Author(s):  
KAVITHA A. N. ◽  
JANAKIRAMAN K. ◽  
RAMAN DANG

Objective: The main objective of the present research work was to develop systematically the Self Micro Emulsifying Drug Delivery system of BCS Class IV drug in a Quality by Design framework. Methods: The quality by design-based formulation development proceeds with defining the Quality Target Product Profile and Critical Quality Attributes of dosage form with appropriate justification for the same. The statistical Mixture design was used for the development of the formulation. The independent variables selected for the design were Oleic acid, Labrasol and PEG 6000, whereas droplet size (nm), emulsification time (sec), % drug loading and % drug release at 15 min were considered as the potential quality attributes of the Self Micro Emulsifying System. The eight different batches of Etravirine-Self Micro Emulsifying systems (ETV-SMEDDS) were prepared and checked for the Critical Quality Attributes. The simultaneous optimization of the formulation was done by the global desirability approach. Results: The characterization report obtained for all the different batches of formulation was analyzed statistically by fitting into regression models. The statistically significant models determined for droplet size (nm) (R2= 0.96 and p-0.1022), emulsification time (sec) (R2= 0.99 and p-0.0267), % drug loading (R2= 0.93 and p-0.1667) and % drug release at 15 min (R2= 0.96 and p-0.0911) and were statistically significant. The maximal global desirability value obtained was 0.9415 and the value indicates, the selected factors and responses have a good correlation and are significant enough for optimization and prediction of best formulation. Conclusion: The QbD approach utilized during the development of ETV-SMEEDS facilitated the identification of Critical Material Attributes and their significant impact on the Critical Quality Attributes of SMEDDS. The concept of building quality into product through the QbD application was utilized successfully in the formulation development.


Sign in / Sign up

Export Citation Format

Share Document