scholarly journals Sensor Fault Classification Based on Support Vector Machine and Statistical Time-Domain Features

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 8682-8690 ◽  
Author(s):  
Sana Ullah Jan ◽  
Young-Doo Lee ◽  
Jungpil Shin ◽  
Insoo Koo
Author(s):  
DJ Bordoloi ◽  
Rajiv Tiwari

In the present work, a multi-fault classification of gears has been attempted by the support vector machine learning technique using the vibration data in time domain. A proper utilization of the support vector machine is based on the selection of support vector machine parameters. The main focus of this article is to examine the performance of the multiclass ability of support vector machine techniques by optimizing its parameters using the grid-search method, genetic algorithm and artificial bee colony algorithm. Four fault conditions were considered. A group of statistical features were extracted from time domain data. The prediction of fault classification is attempted at the same angular speed as the measured data as well as innovatively at the intermediate and extrapolated angular speed conditions. This is due to the fact that it is not feasible to have measurement of vibration data at all continuous speeds of interest. The classification ability is noted and it shows an excellent prediction performance.


2005 ◽  
Vol 293-294 ◽  
pp. 483-492 ◽  
Author(s):  
Zhou Suo Zhang ◽  
Minghui Shen ◽  
Wenzhi Lv ◽  
Zheng Jia He

Aiming at problem on limiting development of machinery fault intelligent diagnosis due to needing many fault data samples, this paper improves a multi-classification algorithm of support vector machine, and a multi-fault classifier based on the algorithm is constructed. Training the multi-fault classifier only needs a small quantity of fault data samples in time domain, and does not need signal preprocessing of extracting signal features. The multi-fault classifier has been applied to fault diagnosis of steam turbine generator, and the results show that it has such simple algorithm, online fault classification and excellent capability of fault classification as advantages.


Author(s):  
D. J. Bordoloi ◽  
Rajiv Tiwari

Health monitoring of a gear box has been attempted by the support vector machine (SVM) learning technique with the help of time-frequency (wavelet) vibration data. Multi-fault classification capability of the SVM is suitably demonstrated that is based on the selection of SVM parameters. Different optimization methods (i.e., the grid-search method (GSM), the genetic algorithm (GA) and the artificial bee colony algorithm (ABCA)) have been performed for optimizing the SVM parameters. Four fault conditions have been considered including the no defect case. Time domain vibration signals were obtained from the gearbox casing operated in a suitable speed range. The continuous wavelet transform (CWT) and wavelet packet transform (WPT) are extracted from time domain signals. A set of statistical features are extracted from the wavelet transform. The classification ability is noted and compared against predictions when purely time domain data is used, and it shows an excellent prediction performance.


Author(s):  
Janani Shruti Rapur ◽  
Rajiv Tiwari

When the hydraulic flow path is incompatible with the physical contours of the centrifugal pump (CP), flow instabilities occur. A prolonged operation in the flow-instability region may result in severe damages of the CP system. Hence, two of the major causes of flow instabilities such as the suction blockage (with five levels of increasing severity) and impeller defects are studied in the present work. Thereafter, an attempt is made to classify these faults and differentiate the physics behind the flow instabilities caused due to them. The tri-axial CP vibration data in time domain are employed for the fault classification. Multidistinct and multicoexisting fault classifications have been performed with different combinations of these faults using support vector machine (SVM) algorithm with radial basis function (RBF) kernel. Prediction results from the experiments and the developed methodology help to segregate the faults into appropriate class, identify the severity of the suction blockage, and substantiate the practical applicability of this study.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2019 ◽  
Vol 118 ◽  
pp. 02036 ◽  
Author(s):  
Hankun Bing ◽  
Yuzhu Zhao ◽  
Le Pang ◽  
Minmin Zhao

Based on the concept of information entropy, this paper analyzes typical nonlinear vibration fault signals of steam turbine based on spectrum, wavelet and HHT theory methods, and extracts wavelet energy spectrum entropy, IMF energy spectrum entropy, time domain singular value entropy and frequency domain power spectrum entropy as faults. The feature is supported by a support vector machine (SVM) as a learning platform. The research results show that the fusion information entropy describes the vibration fault more comprehensively, and the support vector machine fault diagnosis model can achieve higher diagnostic accuracy.


Sign in / Sign up

Export Citation Format

Share Document