scholarly journals Rolling Bearing Fault Diagnosis via ConceFT-Based Time-Frequency Reconfiguration Order Spectrum Analysis

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 67131-67143 ◽  
Author(s):  
Dongdong Liu ◽  
Weidong Cheng ◽  
Weigang Wen
Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4827 ◽  
Author(s):  
Hengchang Liu ◽  
Dechen Yao ◽  
Jianwei Yang ◽  
Xi Li

The rolling bearing is an important part of the train’s running gear, and its operating state determines the safety during the running of the train. Therefore, it is important to monitor and diagnose the health status of rolling bearings. A convolutional neural network is widely used in the field of fault diagnosis because it does not require feature extraction. Considering that the size of the network model is large and the requirements for monitoring equipment are high. This study proposes a novel bearing fault diagnosis method based on lightweight network ShuffleNet V2 with batch normalization and L2 regularization. In the experiment, the one-dimensional time-domain signal is converted into a two-dimensional Time-Frequency Graph (TFG) using a short-time Fourier transform, though the principle of graphics to enhance the TFG dataset. The model mainly consists of two units, one for extracting features and one for spatial down-sampling. The building units are repeatedly stacked to construct the whole model. By comparing the proposed method with the origin ShuffleNet V2, machine learning model and state-of-the-art fault diagnosis model, the generalization of the proposed method for bearing fault diagnosis is verified.


Author(s):  
Jian Xu ◽  
Shuiguang Tong ◽  
Feiyun Cong ◽  
Yidong Zhang

There are still some remaining issues for time–frequency distribution application in rolling bearing fault diagnosis, such as noise suppression and resolution improvement. In this paper, we proposed a novel time–frequency correlation matching and reconstruction method to enhance the ability of rolling bearing fault identification. Firstly, we use the optimal simulated bearing fault signal to obtain the matching template through time–frequency distribution. Then, correlation matching operation is conducted between the obtained matching template and the original time–frequency distribution of analyzed signal. Finally, the original time–frequency distribution is reconstructed with the correlation coefficients and matching template using the template reconstruction algorithm. The reconstructed time–frequency distribution has inherited the capability of matching template in noise suppression, and can reveal the fault impulses of interest in a unified scale. The effectiveness of the proposed method has been proved by experimental result.


Sign in / Sign up

Export Citation Format

Share Document