scholarly journals A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 12348-12359 ◽  
Author(s):  
Zhen Jia ◽  
Zhenbao Liu ◽  
Chi-Man Vong ◽  
Michael Pecht
2021 ◽  
pp. 095745652110557
Author(s):  
Lifeng Chan ◽  
Chun Cheng

Detecting the mechanical faults of rotating machinery in time plays a key role in avoiding accidents. With the coming of the big data era, intelligent fault diagnosis methods based on machine learning models have become promising tools. To improve the feature learning ability, an unsupervised sparse feature learning method called variant sparse filtering is developed. Then, a fault diagnosis method combining variant sparse filtering with a back-propagation algorithm is presented. The involvement of the back-propagation algorithm can further optimize the weight matrix of variant sparse filtering using label data. At last, the developed diagnosis method is validated by rolling bearing and planetary gearbox experiments. The experiment results indicate that the developed method can achieve high accuracy and good stability in rotating machinery fault diagnosis.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yongbo Li ◽  
Xianzhi Wang ◽  
Shubin Si ◽  
Xiaoqiang Du

A novel systematic framework, infrared thermography- (IRT-) based method, for rotating machinery fault diagnosis under nonstationary running conditions is presented in this paper. In this framework, IRT technique is first applied to obtain the thermograph. Then, the fault features are extracted using bag-of-visual-word (BoVW) from the IRT images. In the end, support vector machine (SVM) is utilized to automatically identify the fault patterns of rotating machinery. The effectiveness of proposed method is evaluated using lab experimental signal of rotating machinery. The diagnosis results show that the IRT-based method has certain advantages in classification rotating machinery faults under nonstationary running conditions compared with the traditional vibration-based method.


2018 ◽  
Vol 305 ◽  
pp. 1-14 ◽  
Author(s):  
Shenghao Tang ◽  
Changqing Shen ◽  
Dong Wang ◽  
Shuang Li ◽  
Weiguo Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document