scholarly journals Compact UWB-MIMO Antenna With High Isolation and Triple Band-Notched Characteristics

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 19856-19865 ◽  
Author(s):  
Zhijun Tang ◽  
Xiaofeng Wu ◽  
Jie Zhan ◽  
Shigang Hu ◽  
Zaifang Xi ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 250
Author(s):  
Tale Saeidi ◽  
Idris Ismail ◽  
Sima Noghanian ◽  
Adam R. H. Alhawari ◽  
Qammer H. Abbasi ◽  
...  

This paper presents a miniaturized dual-polarized Multiple Input Multiple Output (MIMO) antenna with high isolation. The antenna meets the constraints of sub-6 GHz 5G and the smartphones’ X-band communications. A vertically polarized modified antipodal Vivaldi antenna and a horizontally polarized spiral antenna are designed and integrated, and then their performance is investigated. Three frequency bands of 3.8 GHz, 5.2 GHz, and 8.0 GHz are considered, and the proposed dual-polarized antenna is studied. High isolation of greater than 20 dB is obtained after integration of metamaterial elements, and without applying any other decoupling methods. The proposed triple-band metamaterial-based antenna has 1.6 GHz bandwidth (BW) (2.9 GHz–4.5 GHz), 13.5 dBi gain, and 98% radiation efficiency at 3.8 GHz. At 5.2 GHz it provides 1.2 GHz BW, 9.5 dBi gain, and 96% radiation efficiency. At 8.0 GHz it has 1 GHz BW, 6.75 dBi gain, and 92% radiation efficiency. Four antenna elements (with eight ports) were laid out orthogonally at the four corners of a mobile printed circuit board (PCB) to be utilized as a MIMO antenna for 5G communications. The performance of the MIMO antenna is examined and reported.


2015 ◽  
Vol 57 (11) ◽  
pp. 2555-2558 ◽  
Author(s):  
Chi-Jung Kuo ◽  
Chong-Yi Liou ◽  
Shau-Gang Mao

2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Sign in / Sign up

Export Citation Format

Share Document