scholarly journals A Graphene-Assembled Film Based MIMO Antenna Array with High Isolation for 5G Wireless Communication

2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Abubaker Ahmed Elobied ◽  
Xue-Xia Yang ◽  
Ningjie Xie ◽  
Steven Gao

This paper presents a close-spaced dual-band 2 × 2 multiple-input multiple-output (MIMO) antenna with high isolation based on half-mode substrate integrated waveguide (HMSIW). The dual-band operation of the antenna element is achieved by loading a rectangular patch outside the radiating aperture of an HMSIW cavity. The HMSIW cavity is excited by a coaxial probe, whereas the rectangular patch is energized through proximity coupling by the radiating aperture of HMSIW. The antenna elements can be closely placed using the rotation and orthogonal arrangement for a 2 × 2 array. Small neutralization lines at the center of the MIMO antenna can increase the isolation among its elements by around 10 dB in the lower band and 5 dB in the higher band. A prototype of the MIMO antenna is fabricated and its performance is measured. The measured results show that the resonant frequencies are centered at 4.43 and 5.39 GHz with bandwidths of 110 and 80 MHz and peak gains of 6 and 6.4 dBi, respectively. The minimum isolation in both bands is greater than 35 dB. The envelope correlation coefficient is lower than 0.005 within two operating bands.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1582
Author(s):  
Ahsan Altaf ◽  
Amjad Iqbal ◽  
Amor Smida ◽  
Jamel Smida ◽  
Ayman A. Althuwayb ◽  
...  

Multiple-input multiple-output (MIMO) scheme refers to the technology where more than one antenna is used for transmitting and receiving the information packets. It enhances the channel capacity without more power. The available space in the modern compact devices is limited and MIMO antenna elements need to be placed closely. The closely spaced antennas undergo an undesirable coupling, which deteriorates the antenna parameters. In this paper, an ultra wide-band (UWB) MIMO antenna system with an improved isolation is presented. The system has a wide bandwidth range from 2–13.7 GHz. The antenna elements are closely placed with an edge to edge distance of 3 mm. In addition to the UWB attribute of the system, the mutual coupling between the antennas is reduced by using slotted stub. The isolation is improved and is below −20 dB within the whole operating range. By introducing the decoupling network, the key performance parameters of the antenna are not affected. The system is designed on an inexpensive and easily available FR-4 substrate. To better understand the working of the proposed system, the equivalent circuit model is also presented. To model the proposed system accurately, different radiating modes and inter-mode coupling is considered and modeled. The EM model, circuit model, and the measured results are in good agreement. Different key performance parameters of the system and the antenna element such as envelope correlation coefficient (ECC), diversity gain, channel capcity loss (CCL) gain, radiation patterns, surface currents, and scattering parameters are presented. State-of-the-art comparison with the recent literature shows that the proposed antenna has minimal dimensions, a large bandwidth, an adequate gain value and a high isolation. It is worth noticeable that the proposed antenna has high isolation even the patches has low edge-to-edge gap (3 mm). Based on its good performance and compact dimensions, the proposed antenna is a suitable choice for high throughput compact UWB transceivers.


Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Lingsheng Yang ◽  
Ming Ji ◽  
Biyu Cheng ◽  
Bo Ni

AbstractIn this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured –10 dB impedance bandwidth is 3.2–3.9 GHz which can cover the LTE bands 42 and 43 (3.4–3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.


2017 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
C. J. Malathi ◽  
D. Thiripurasundari

A 2´1 (two-element) multiple-input multiple-output (MIMO) patch antenna system is designed and fabricated for (2.43 – 2.57) GHz LTE band 7 operation. It uses comple-mentary split -ring resonator (CSRR) loading on its ground plane for antenna miniaturization. This reduces the single-element antenna size by 76%. The total board size of the proposed MIMO antenna system, including the GND plane is 50´50´0.8mm3, while the single-patch antenna element has a size of 18.5 ´16mm2. The antenna is fabricated and tested. Measured results are in good agreement with simulations. A minimum measured isolation of 10 dB is obtained given the close interelement spacing of 0.17λ.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Lingsheng Yang ◽  
Tao Li ◽  
Su Yan

Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO) antenna system for LTE2300 (used in Asia and Africa) and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz) operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λat 2.20 GHz). Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.


2021 ◽  
Author(s):  
satish kumar ◽  
Gunasekaran Thangavel ◽  
Said Amer Salim Al Ismaili Ismaili ◽  
Balambigai Subramanian

Abstract For the operation of 2.45GHz ISM band, a 2x2 Multiple Input Multiple Output (MIMO) antenna system is designed and fabricated. Complementary Split Ring Resonator (CSRR) is used in the MIMO patch and loaded on its ground plane to miniaturize the single antenna element. The single patch antenna element of 14x18 mm2 is fixed in a board of the Designed MIMO antennae system measuring 100x50x0.8 mm3. The antenna is tested by measuring radiation pattern, gain, VSWR, mutual coupling and return loss. The results of the Designed antenna systems are in good agreement with the simulations. In comparison to a conventional microstrip antenna, the Designed antenna achieves a 75% reduction in the resonant frequency.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1490
Author(s):  
Wei Qian ◽  
Wei Xia ◽  
Wenqing Zhou ◽  
Rongguo Song ◽  
Xin Zhao ◽  
...  

A novel stopband frequency-selective surface (FSS) made of high-conductivity graphene assemble films (HCGFs) for reducing the mutual coupling between dielectric resonator antennas (DRAs) is investigated and presented. The FSS is a “Hamburg” structure consisting of a two-layer HCGF and a one-layer dielectric substrate. A laser-engraving technology is applied to fabricate the FSS. The proposed improved Jerusalem cross FSS, compared with cross FSS and Jerusalem cross FSS, can effectively reduce the size of the unit cell by 88.89%. Moreover, the FSS, composing of 2 × 10-unit cells along the E-plane, is proposed and embedded between two DRAs, which nearly has no effect on the reflection coefficient of the antenna. However, the mutual coupling is reduced by more than 7 dB on average (7.16 dB at 3.4 GHz, 7.42 dB at 3.5 GHz, 7.71 dB at 3.6 GHz) with the FSS. The patterns of the antenna are also measured. Therefore, it is suggested that the proposed FSS is a good candidate to reduce mutual coupling in the multiple-input–multiple-output (MIMO) antenna system for 5G communication.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhaoliang Chen ◽  
Wen Geyi ◽  
Ming Zhang ◽  
Jun Wang

Three types of compact MIMO (Multiple-Input Multiple-Output) antenna systems with four and six elements for mobile handsets are studied in this paper. The MIMO antenna system is built on a FR4 substrate of the dimensions 136 mm × 68.8 mm × 1 mm. The antenna element is a folded planar inverted-F antenna with added resonating branches wound on a small dielectric cube of the dimensions 10 mm × 10 mm × 5 mm, which is the smallest volume so far reported covering the frequency bands 1880 MHz–1920 MHz and 2300 MHz–2620 MHz for GSM1900, LTE2300, 2.4-GHz WLAN, and LTE2500. The effects of element numbers and configurations on the system performance are investigated. More than 10 dB isolations have been achieved by properly designing the antenna elements through the use of the pattern diversity without using decoupling circuits. The envelope correlation coefficients among the elements, the mean effective gains, the efficiencies, and the multiplexing efficiencies of the elements are also discussed.


2014 ◽  
Vol 7 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Xi-Wang Dai ◽  
Long Li ◽  
Zhen-Ye Wang ◽  
Chang-Hong Liang

In this paper, a compact multiple-input multiple-output (MIMO) antenna system with high isolation is proposed for 2.4 GHz wireless local area network (WLAN) application. The system is composed of two aperture-coupled shorted patch antennas with a spacing of 4 mm (only 0.032λ). The antenna is fed with an H-shaped coupling slot, and the defected shorting wall is used for high isolation. The proposed MIMO system exhibits an isolation of better than −20 dB and a maximum isolation of −43 dB at the central frequency. The envelope correlation coefficient is less than 0.01. The simulated and measured results show that the proposed antenna is a good candidate for MIMO system with higher isolation and better diversity.


Sign in / Sign up

Export Citation Format

Share Document