scholarly journals Context-Aware Quantification for VANET Security: A Markov Chain-Based Scheme

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 173618-173626
Author(s):  
Jian Wang ◽  
Hongyang Chen ◽  
Zemin Sun
2021 ◽  
Author(s):  
Giovanni R. da Silva ◽  
Daniel F. Macedo ◽  
Aldri L. dos Santos

Generally, approaches to build the security of Smart Home Systems (SHS) require big amount of data to implement Access Control and Intrusion Detection Systems, with storage in cloud, for instance, being a vulnerability to inhabitants privacy. Besides, most works rely on cloud computing or resources in the cloud to perform security tasks, what can be exploited by attackers. This work presents the ZASH (Zero-Aware Smart Home System), an Access Control for SHS. ZASH uses Continuous Authentication with Zero Trust, supported by real-time context and activity information, enabled by Edge Computing and Markov Chain, to prevent and mitigate impersonation attacks that aim to invade inhabitants privacy. An experimental evaluation demonstrated the system capability to dynamically adapt to new inhabitants behaviors withal blocking impersonation attacks.


2019 ◽  
Vol 62 (3) ◽  
pp. 577-586 ◽  
Author(s):  
Garnett P. McMillan ◽  
John B. Cannon

Purpose This article presents a basic exploration of Bayesian inference to inform researchers unfamiliar to this type of analysis of the many advantages this readily available approach provides. Method First, we demonstrate the development of Bayes' theorem, the cornerstone of Bayesian statistics, into an iterative process of updating priors. Working with a few assumptions, including normalcy and conjugacy of prior distribution, we express how one would calculate the posterior distribution using the prior distribution and the likelihood of the parameter. Next, we move to an example in auditory research by considering the effect of sound therapy for reducing the perceived loudness of tinnitus. In this case, as well as most real-world settings, we turn to Markov chain simulations because the assumptions allowing for easy calculations no longer hold. Using Markov chain Monte Carlo methods, we can illustrate several analysis solutions given by a straightforward Bayesian approach. Conclusion Bayesian methods are widely applicable and can help scientists overcome analysis problems, including how to include existing information, run interim analysis, achieve consensus through measurement, and, most importantly, interpret results correctly. Supplemental Material https://doi.org/10.23641/asha.7822592


Sign in / Sign up

Export Citation Format

Share Document