scholarly journals Research on Lane-Change Strategy With Real-Time Obstacle Avoidance Function

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 211255-211268
Author(s):  
Qiong Wu ◽  
Wu-Dong Liu ◽  
Shi-Yong Guo ◽  
Shuo Cheng ◽  
Shao-Jie Li ◽  
...  
2009 ◽  
Vol 106 (37) ◽  
pp. 15996-16001 ◽  
Author(s):  
Christopher L. Striemer ◽  
Craig S. Chapman ◽  
Melvyn A. Goodale

When we reach toward objects, we easily avoid potential obstacles located in the workspace. Previous studies suggest that obstacle avoidance relies on mechanisms in the dorsal visual stream in the posterior parietal cortex. One fundamental question that remains unanswered is where the visual inputs to these dorsal-stream mechanisms are coming from. Here, we provide compelling evidence that these mechanisms can operate in “real-time” without direct input from primary visual cortex (V1). In our first experiment, we used a reaching task to demonstrate that an individual with a dense left visual field hemianopia after damage to V1 remained strikingly sensitive to the position of unseen static obstacles placed in his blind field. Importantly, in a second experiment, we showed that his sensitivity to the same obstacles in his blind field was abolished when a short 2-s delay (without vision) was introduced before reach onset. These findings have far-reaching implications, not only for our understanding of the time constraints under which different visual pathways operate, but also in relation to how these seemingly “primitive” subcortical visual pathways can control complex everyday behavior without recourse to conscious vision.


2013 ◽  
Vol 748 ◽  
pp. 695-698
Author(s):  
Hai Peng Wang ◽  
Yong Sun ◽  
Peng Xiao ◽  
Yi Qing Luan

The obstacle avoidance system is an important part of the intelligent inspection robot. According to the special environmental requirements for substation inspection robot, the inspection robot obstacle avoidance detection system was designed. The system takes MCU as the controller core, selects many sets of ultrasonic sensors to detect the obstacle information around the robot, designs the transmitting and receiving circuit of the ultrasonic signal, and completes the system software program. In consideration of the substations effect of EMI to the electronic equipments, when designing circuit, using a large of filter circuit, improve systems anti-interference performance, realize real-time and veracity of measurement. Using on substation shows that the system run steadily, have high measurement precision, its important for improving the robot using on substation.


Author(s):  
Joseph Funke ◽  
J. Christian Gerdes

This paper demonstrates that an autonomous vehicle can perform emergency lane changes up to the limits of handling through real-time generation and evaluation of bi-elementary paths. Path curvature and friction limits determine the maximum possible speed along the path and, consequently, the feasibility of the path. This approach incorporates both steering inputs and changes in speed during the maneuver. As a result, varying path parameters and observing the maximum possible entry speed of resulting paths gives insight about when and to what extent a vehicle should brake and turn during emergency lane change maneuvers. Tests on an autonomous vehicle validate this approach for lane changes at the limits of handling.


2014 ◽  
Vol 1 (1) ◽  
pp. 18-30
Author(s):  
Abhishek Abhishek ◽  
◽  
Sagar Setu ◽  
Keyword(s):  

Author(s):  
Tasher Ali Sheikh ◽  
Swacheta Dutta ◽  
Smriti Baruah ◽  
Pooja Sharma ◽  
Sahadev Roy

The concept of path planning and collision avoidance are two of the most common theories applied for designing and developing in advanced autonomous robotics applications. NI LabView makes it possible to implement real-time processor for obstacle avoidance. The obstacle avoidance strategy ensures that the robot whenever senses the obstacle stops without being collided and moves freely when path is free, but sometimes there exists a probability that once the path is found free and the robot starts moving, then within a fraction of milliseconds, the robot again sense the obstacle and it stops. This continuous swing of stop and run within a very small period of time may cause heavy burden on the system leading to malfunctioning of the components of the system. This paper deals with overcoming this drawback in a way that even after the robot calculates the path is free then also it will wait for a specific amount of time before running it. So as to confirm that if again the sensor detects the obstacle within that specified period then robot don’t need to transit its state suddenly thus avoiding continuous transition of run and stop. Thus it reduces the heavy burden on the system.


Sign in / Sign up

Export Citation Format

Share Document