scholarly journals Obstacle Avoidace Robot Using LabView

Author(s):  
Tasher Ali Sheikh ◽  
Swacheta Dutta ◽  
Smriti Baruah ◽  
Pooja Sharma ◽  
Sahadev Roy

The concept of path planning and collision avoidance are two of the most common theories applied for designing and developing in advanced autonomous robotics applications. NI LabView makes it possible to implement real-time processor for obstacle avoidance. The obstacle avoidance strategy ensures that the robot whenever senses the obstacle stops without being collided and moves freely when path is free, but sometimes there exists a probability that once the path is found free and the robot starts moving, then within a fraction of milliseconds, the robot again sense the obstacle and it stops. This continuous swing of stop and run within a very small period of time may cause heavy burden on the system leading to malfunctioning of the components of the system. This paper deals with overcoming this drawback in a way that even after the robot calculates the path is free then also it will wait for a specific amount of time before running it. So as to confirm that if again the sensor detects the obstacle within that specified period then robot don’t need to transit its state suddenly thus avoiding continuous transition of run and stop. Thus it reduces the heavy burden on the system.

2017 ◽  
Vol 5 (1) ◽  
pp. 198-205 ◽  
Author(s):  
V. Keerthana ◽  
C. Kiruthiga ◽  
P. Kiruthika ◽  
V. Sowmiya ◽  
R. Manikadan

The field of autonomous mobile robotics has recently gained many researchers’ interests. Due to the specific needs required by various applications of mobile robot systems, especially in navigation, designing a real time obstacle avoidance and path following robot system has become the backbone of controlling robots in unknown environments. The main objective of our project is applications based mobile robot systems, especially in navigation, designing real time obstacle avoidance and path following robot system has become the backbone of controlling robots in unknown environments. The main objective behind using the obstacle avoidance approach is to obtain a collision-free trajectory from the starting point to the target in monitoring environments. The ability of the robot to follow a path, detects obstacles, and navigates around them to avoid collision. It also shows that the robot has been successfully following very congested curves and has avoided any obstacle that emerged on its path. Motion planning that allows the robot to reach its target without colliding with any obstacles that may exist in its path. To avoid collision in the mobile robot environment, providing a path planning& line following approach. Line following, path planning, collision avoidance, back propagation, improved memory, detecting long distance obstacles. Cheap and economical than the former one. Also work with back propagation technique.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1850
Author(s):  
Hui Zhang ◽  
Yongfei Zhu ◽  
Xuefei Liu ◽  
Xiangrong Xu

In recent years, dual-arm robots have been favored in various industries due to their excellent coordinated operability. One of the focused areas of study on dual-arm robots is obstacle avoidance, namely path planning. Among the existing path planning methods, the artificial potential field (APF) algorithm is widely applied in obstacle avoidance for its simplicity, practicability, and good real-time performance over other planning methods. However, APF is firstly proposed to solve the obstacle avoidance problem of mobile robot in plane, and thus has some limitations such as being prone to fall into local minimum, not being applicable when dynamic obstacles are encountered. Therefore, an obstacle avoidance strategy for a dual-arm robot based on speed field with improved artificial potential field algorithm is proposed. In our method, the APF algorithm is used to establish the attraction and repulsion functions of the robotic manipulator, and then the concepts of attraction and repulsion speed are introduced. The attraction and repulsion functions are converted into the attraction and repulsion speed functions, which mapped to the joint space. By using the Jacobian matrix and its inverse to establish the differential velocity function of joint motion, as well as comparing it with the set collision distance threshold between two robotic manipulators of robot, the collision avoidance can be solved. Meanwhile, after introducing a new repulsion function and adding virtual constraint points to eliminate existing limitations, APF is also improved. The correctness and effectiveness of the proposed method in the self-collision avoidance problem of a dual-arm robot are validated in MATLAB and Adams simulation environment.


2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988141989897 ◽  
Author(s):  
Shinan Zhu ◽  
Weiyi Zhu ◽  
Xueqin Zhang ◽  
Tao Cao

Path planning of lunar robots is the guarantee that lunar robots can complete tasks safely and accurately. Aiming at the shortest path and the least energy consumption, an adaptive potential field ant colony algorithm suitable for path planning of lunar robot is proposed to solve the problems of slow convergence speed and easy to fall into local optimum of ant colony algorithm. This algorithm combines the artificial potential field method with ant colony algorithm, introduces the inducement heuristic factor, and adjusts the state transition rule of the ant colony algorithm dynamically, so that the algorithm has higher global search ability and faster convergence speed. After getting the planned path, a dynamic obstacle avoidance strategy is designed according to the predictable and unpredictable obstacles. Especially a geometric method based on moving route is used to detect the unpredictable obstacles and realize the avoidance of dynamic obstacles. The experimental results show that the improved adaptive potential field ant colony algorithm has higher global search ability and faster convergence speed. The designed obstacle avoidance strategy can effectively judge whether there will be collision and take obstacle avoidance measures.


Author(s):  
Yimin Chen ◽  
Chuan Hu ◽  
Yechen Qin ◽  
Mingjun Li ◽  
Xiaolin Song

Obstacle avoidance strategy is important to ensure the driving safety of unmanned ground vehicles. In the presence of static and moving obstacles, it is challenging for the unmanned ground vehicles to plan and track the collision-free paths. This paper proposes an obstacle avoidance strategy consists of the path planning and the robust fuzzy output-feedback control. A path planner is formed to generate the collision-free paths that avoid static and moving obstacles. The quintic polynomial curves are employed for path generation considering computational efficiency and ride comfort. Then, a robust fuzzy output-feedback controller is designed to track the planned paths. The Takagi–Sugeno (T–S) fuzzy modeling technique is utilized to handle the system variables when forming the vehicle dynamic model. The robust output-feedback control approach is used to track the planned paths without using the lateral velocity signal. The proposed obstacle avoidance strategy is validated in CarSim® simulations. The simulation results show the unmanned ground vehicle can avoid the static and moving obstacles by applying the designed path planning and robust fuzzy output-feedback control approaches.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 316 ◽  
Author(s):  
S SARATH CHANDRA ◽  
Dr A. S. C. S. SASTRY

In recent years, have seen rapidly growing interest with implementation and development of different type of networks of multiple unnamed aerial vehicles (UAV), as aerial sensor networks for inter co-operative monitoring, surveillance monitoring and rapid emergency response for communication. This is an emerging concept in real time communicative networks. Path detection, planning and obstacle avoidance is the aggressive representation for unnamed aerial vehicles in indoor environments. There are many techniques/approaches are introduced to evaluate above features for real time communicative environments. So in this paper, we discuss about those techniques implementation procedure and brief description regarding obstacle avoidance, multi-point interaction to track the location in wireless network communications. This paper analysis most successful path detection, planning and other reference based methods with successive description in real time scenario. Furthermore, a comprehensive with comparable result analysis of each path planning technique by considering their implementation in time complexity  and other parameters in real time communicative networks.  


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xuexi Zhang ◽  
Jiajun Lai ◽  
Dongliang Xu ◽  
Huaijun Li ◽  
Minyue Fu

As the basic system of the rescue robot, the SLAM system largely determines whether the rescue robot can complete the rescue mission. Although the current 2D Lidar-based SLAM algorithm, including its application in indoor rescue environment, has achieved much success, the evaluation of SLAM algorithms combined with path planning for indoor rescue has rarely been studied. This paper studies mapping and path planning for mobile robots in an indoor rescue environment. Combined with path planning algorithm, this paper analyzes the applicability of three SLAM algorithms (GMapping algorithm, Hector-SLAM algorithm, and Cartographer algorithm) in indoor rescue environment. Real-time path planning is studied to test the mapping results. To balance path optimality and obstacle avoidance, A ∗ algorithm is used for global path planning, and DWA algorithm is adopted for local path planning. Experimental results validate the SLAM and path planning algorithms in simulated, emulated, and competition rescue environments, respectively. Finally, the results of this paper may facilitate researchers quickly and clearly selecting appropriate algorithms to build SLAM systems according to their own demands.


Author(s):  
Rouhollah Jafari ◽  
Shuqing Zeng ◽  
Nikolai Moshchuk

In this paper, a collision avoidance system is proposed to steer away from a leading target vehicle and other surrounding obstacles. A virtual target lane is generated based on an object map resulted from perception module. The virtual target lane is used by a path planning algorithm for an evasive steering maneuver. A geometric method which is computationally fast for real-time implementations is employed. The algorithm is tested in real-time and the simulation results suggest the effectiveness of the system in avoiding collision with not only the leading target vehicle but also other surrounding obstacles.


Sign in / Sign up

Export Citation Format

Share Document