scholarly journals Optimal Precoder Selection for Spatially Multiplexed Multiple-Input Multiple-Output Systems With Maximum Likelihood Detection: Exploiting the Concept of Sphere Decoding

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 223859-223868
Author(s):  
Woosung Hwang ◽  
Jaeyoung Park ◽  
Jaekwon Kim ◽  
Hyo-Sang Lim
2019 ◽  
Vol 9 (21) ◽  
pp. 4624
Author(s):  
Uzokboy Ummatov ◽  
Kyungchun Lee

This paper proposes an adaptive threshold-aided K-best sphere decoding (AKSD) algorithm for large multiple-input multiple-output systems. In the proposed scheme, to reduce the average number of visited nodes compared to the conventional K-best sphere decoding (KSD), the threshold for retaining the nodes is adaptively determined at each layer of the tree. Specifically, we calculate the adaptive threshold based on the signal-to-noise ratio and index of the layer. The ratio between the first and second smallest accumulated path metrics at each layer is also exploited to determine the threshold value. In each layer, in addition to the K paths associated with the smallest path metrics, we also retain the paths whose path metrics are within the threshold from the Kth smallest path metric. The simulation results show that the proposed AKSD provides nearly the same bit error rate performance as the conventional KSD scheme while achieving a significant reduction in the average number of visited nodes, especially at high signal-to-noise ratios.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Fatemeh Eshagh Hosseini ◽  
Shahriar Shirvani Moghaddam

In order to apply sphere decoding algorithm in multiple-input multiple-output communication systems and to make it feasible for real-time applications, its computational complexity should be decreased. To achieve this goal, this paper provides some useful insights into the effect of initial and the final sphere radii and estimating them effortlessly. It also discusses practical ways of initiating the algorithm properly and terminating it before the normal end of the process as well as the cost of these methods. Besides, a novel algorithm is introduced which utilizes the presented techniques according to a threshold factor which is defined in terms of the number of transmit antennas and the noise variance. Simulation results show that the proposed algorithm offers a desirable performance and reasonable complexity satisfying practical constraints.


Sign in / Sign up

Export Citation Format

Share Document