scholarly journals Reducing the moisture effect and improving the prediction of soil organic matter with VIS-NIR spectroscopy in black soil area

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yang Tan ◽  
Qigang Jiang ◽  
Longfei Yu ◽  
Huaxin Liu ◽  
Bo Zhang
2020 ◽  
Vol 12 (22) ◽  
pp. 3765
Author(s):  
Xitong Xu ◽  
Shengbo Chen ◽  
Zhengyuan Xu ◽  
Yan Yu ◽  
Sen Zhang ◽  
...  

Black soil in northeast China is gradually degraded and soil organic matter (SOM) content decreases at a rate of 0.5% per year because of the long-term cultivation. SOM content can be obtained rapidly by visible and near-infrared (Vis–NIR) spectroscopy. It is critical to select appropriate preprocessing techniques for SOM content estimation through Vis–NIR spectroscopy. This study explored three categories of preprocessing techniques to improve the accuracy of SOM content estimation in black soil area, and a total of 496 ground samples were collected from the typical black soil area at 0–15 cm in Hai Lun City, Heilongjiang Province, northeast of China. Three categories of preprocessing include denoising, data transformation and dimensionality reduction. For denoising, Svitzky-Golay filter (SGF), wavelet packet transform (WPT), multiplicative scatter correction (MSC), and none (N) were applied to spectrum of ground samples. For data transformation, fractional derivatives were allowed to vary from 0 to 2 with an increment of 0.2 at each step. For dimensionality reduction, multidimensional scaling (MDS) and locally linear embedding (LLE) were introduced and compared with principal component analysis (PCA), which was commonly used for dimensionality reduction of soil spectrum. After spectral pretreatments, a total of 132 partial least squares regression (PLSR) models were constructed for SOM content estimation. Results showed that SGF performed better than the other three denoising methods. Low-order derivatives can accentuate spectral features of soil for SOM content estimation; as the order increases from 0.8, the spectrum were more susceptible to spectral noise interferences. In most cases, 0.2–0.8 order derivatives exhibited the best estimation performance. Furthermore, PCA yielded the optimal predictability, the mean residual predictive deviation (RPD) and maximum RPD of the models using PCA were 1.79 and 2.60, respectively. The application of appropriate preprocessing techniques could improve the efficiency and accuracy of SOM content estimation, which is important for the protection of ecological and agricultural environment in black soil area.


2019 ◽  
Vol 145 ◽  
pp. 1094-1101 ◽  
Author(s):  
Felipe B. de Santana ◽  
Larissa O. de Giuseppe ◽  
André M. de Souza ◽  
Ronei J. Poppi

2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

<p>Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.</p><p>The study is performed in Mediterranean Croatia (44° 05’ N; 15° 22’ E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed <em>Quercus ssp.</em> and <em>Juniperus ssp.</em> forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22<sup>nd</sup> 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31<sup>st</sup> and September 5<sup>th </sup>2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE<sub>p</sub>) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.</p><p>The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE<sub>p </sub>(Spectroscopy dataset RMSE<sub>p</sub> = 1.91; Sentinel-2 dataset RMSE<sub>p</sub> = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.</p><p><strong>Keywords:</strong> remote sensing, soil spectroscopy, wildfires, soil organic matter</p><p><strong>Acknowledgment: </strong>This work was supported by the Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO). Aleksandra Perčin is acknowledged for her cooperation during the laboratory work.</p>


2020 ◽  
Vol 57 (19) ◽  
pp. 192801
Author(s):  
马国林 Ma Guolin ◽  
丁建丽 Ding Jianli ◽  
张子鹏 Zhang Zipeng

2020 ◽  
Vol 57 (24) ◽  
pp. 242803
Author(s):  
冉思 Ran Si ◽  
丁建丽 Ding Jianli ◽  
葛翔宇 Ge Xiangyu ◽  
刘博华 Liu Bohua ◽  
张钧泳 Zhang Junyong

2020 ◽  
Vol 51 (7) ◽  
pp. 883-895
Author(s):  
Zhongqing Zhang ◽  
Qiang Gao ◽  
Jingmin Yang ◽  
Lujun Li ◽  
Yue Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document