scholarly journals A Bayesian Optimization Approach for Water Resources Monitoring Through an Autonomous Surface Vehicle: The Ypacarai Lake Case Study

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 9163-9179 ◽  
Author(s):  
Federico Peralta Samaniego ◽  
Daniel Gutierrez Reina ◽  
Sergio L. Toral Marin ◽  
Mario Arzamendia ◽  
Derlis O. Gregor
2021 ◽  
Author(s):  
Federico Peralta Samaniego ◽  
Sergio Toral Marín ◽  
Daniel Gutierrez Reina

<div>Bayesian optimization is a popular sequential decision strategy that can be used for environmental monitoring. In this work, we propose an efficient multi-Autonomous Surface Vehicle system capable of monitoring the Ypacarai Lake (San Bernardino, Paraguay) (60 km<sup>2</sup>) using the Bayesian optimization approach with a Voronoi Partition system. The system manages to quickly approximate the real unknown distribution map of a water quality parameter using Gaussian Processes as surrogate models. Furthermore, to select new water quality measurement locations, an acquisition function adapted to vehicle energy constraints is used. Moreover, a Voronoi Partition system helps to distributing the workload with all the available vehicles, so that robustness and scalability is assured. For evaluation purposes, we use both the mean squared error and computational efficiency. The results showed that our method manages to efficiently monitor the Ypacarai Lake, and also provides confident approximate models of water quality parameters. It has been observed that, for every vehicle, the resulting surrogate model improves by 38%.</div>


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 963
Author(s):  
Federico Peralta ◽  
Daniel Gutierrez Reina ◽  
Sergio Toral ◽  
Mario Arzamendia ◽  
Derlis Gregor

Bayesian optimization is a sequential method that can optimize a single and costly objective function based on a surrogate model. In this work, we propose a Bayesian optimization system dedicated to monitoring and estimating multiple water quality parameters simultaneously using a single autonomous surface vehicle. The proposed work combines different strategies and methods for this monitoring task, evaluating two approaches for acquisition function fusion: the coupled and the decoupled techniques. We also consider dynamic parametrization of the maximum measurement distance traveled by the ASV so that the monitoring system balances the total number of measurements and the total distance, which is related to the energy required. To evaluate the proposed approach, the Ypacarai Lake (Paraguay) serves as the test scenario, where multiple maps of water quality parameters, such as pH and dissolved oxygen, need to be obtained efficiently. The proposed system is compared with the predictive entropy search for multi-objective optimization with constraints (PESMOC) algorithm and the genetic algorithm (GA) path planning for the Ypacarai Lake scenario. The obtained results show that the proposed approach is 10.82% better than other optimization methods in terms of R2 score with noiseless measurements and up to 17.23% better when the data are noisy. Additionally, the proposed approach achieves a good average computational time for the whole mission when compared with other methods, 3% better than the GA technique and 46.5% better than the PESMOC approach.


2021 ◽  
Author(s):  
Federico Peralta Samaniego ◽  
Sergio Toral Marín ◽  
Daniel Gutierrez Reina

<div>Bayesian optimization is a popular sequential decision strategy that can be used for environmental monitoring. In this work, we propose an efficient multi-Autonomous Surface Vehicle system capable of monitoring the Ypacarai Lake (San Bernardino, Paraguay) (60 km<sup>2</sup>) using the Bayesian optimization approach with a Voronoi Partition system. The system manages to quickly approximate the real unknown distribution map of a water quality parameter using Gaussian Processes as surrogate models. Furthermore, to select new water quality measurement locations, an acquisition function adapted to vehicle energy constraints is used. Moreover, a Voronoi Partition system helps to distributing the workload with all the available vehicles, so that robustness and scalability is assured. For evaluation purposes, we use both the mean squared error and computational efficiency. The results showed that our method manages to efficiently monitor the Ypacarai Lake, and also provides confident approximate models of water quality parameters. It has been observed that, for every vehicle, the resulting surrogate model improves by 38%.</div>


1997 ◽  
Vol 15 (1) ◽  
pp. 55-72 ◽  
Author(s):  
F. Konradsen ◽  
M. Chimbari ◽  
P. Furu ◽  
M. H. Birley ◽  
N. Ø. Christensen

Author(s):  
Mohamed ElFetyany ◽  
Rokaia Kamal ◽  
Mohamed Helmy ◽  
Mohamed Lotfy Nasr

2021 ◽  
pp. 096466392110316
Author(s):  
Chloé Nicolas-Artero

This article shows how geo-legal devices created to deal with environmental crisis situations make access to drinking water precarious and contribute to the overexploitation and contamination of water resources. It relies on qualitative methods (interviews, observations, archive work) to identify and analyse two geo-legal devices applied in the case study of the Elqui Valley in Chile. The first device, generated by the Declaration of Water Scarcity, allows private sanitation companies to concentrate water rights and extend their supply network, thus producing an overexploitation of water resources. In the context of mining pollution, the second device is structured around the implementation of the Rural Drinking Water Programme and the distribution of water by tankers, which has made access to drinking water more precarious for the population and does nothing to prevent pollution.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 934
Author(s):  
Mariacrocetta Sambito ◽  
Gabriele Freni

In the urban drainage sector, the problem of polluting discharges in sewers may act on the proper functioning of the sewer system, on the wastewater treatment plant reliability and on the receiving water body preservation. Therefore, the implementation of a chemical monitoring network is necessary to promptly detect and contain the event of contamination. Sensor location is usually an optimization exercise that is based on probabilistic or black-box methods and their efficiency is usually dependent on the initial assumption made on possible eligibility of nodes to become a monitoring point. It is a common practice to establish an initial non-informative assumption by considering all network nodes to have equal possibilities to allocate a sensor. In the present study, such a common approach is compared with different initial strategies to pre-screen eligible nodes as a function of topological and hydraulic information, and non-formal 'grey' information on the most probable locations of the contamination source. Such strategies were previously compared for conservative xenobiotic contaminations and now they are compared for a more difficult identification exercise: the detection of nonconservative immanent contaminants. The strategies are applied to a Bayesian optimization approach that demonstrated to be efficient in contamination source location. The case study is the literature network of the Storm Water Management Model (SWMM) manual, Example 8. The results show that the pre-screening and ‘grey’ information are able to reduce the computational effort needed to obtain the optimal solution or, with equal computational effort, to improve location efficiency. The nature of the contamination is highly relevant, affecting monitoring efficiency, sensor location and computational efforts to reach optimality.


Sign in / Sign up

Export Citation Format

Share Document