scholarly journals Bearing Fault Diagnosis Method Based on Ensemble Composite Multi-Scale Dispersion Entropy and Density Peaks Clustering

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ai-Song Qin ◽  
Han-Ling Mao ◽  
Qin Hu ◽  
Qing-Hua Zhang
2011 ◽  
Vol 55-57 ◽  
pp. 747-752
Author(s):  
Zhong Hai Li ◽  
Hao Fei Mao ◽  
Jian Guo Cui ◽  
Yan Zhang

The paper presents a motor bearing fault diagnosis method based on MSICA (Multi-scale Independent Principal Component Analysis) and LSSVM (Least Squares Support Vector Machine). MSICA is introduced into motor fault diagnosis. First, wavelet decomposition is used, and then ICA models are built by wavelet coefficients in each scale, which detect fault, and finally LSSVM is used to classify fault type. Conclusions are obtained from the analysis of the experimental data provided by Case Western Reserve University’s Bearing Data Website. And it indicates that the proposed method is simple and effective.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7319
Author(s):  
Jiajun He ◽  
Ping Wu ◽  
Yizhi Tong ◽  
Xujie Zhang ◽  
Meizhen Lei ◽  
...  

Bearings are the key and important components of rotating machinery. Effective bearing fault diagnosis can ensure operation safety and reduce maintenance costs. This paper aims to develop a novel bearing fault diagnosis method via an improved multi-scale convolutional neural network (IMSCNN). In traditional convolutional neural network (CNN), a fixed convolutional kernel is often employed in the convolutional layer. Thus, informative features can not be fully extracted for fault diagnosis. In the proposed IMSCNN, a 1D dimensional convolutional layer is used to mitigate the effect of noise contained in vibration signals. Then, four dilated convolutional kernels with different dilation rates are integrated to extract multi-scale features through the inception structure. Experimental results from the popular CWRU and PU datasets show the superiority of the proposed method by comparison with other related methods.


2020 ◽  
Vol 2 (4) ◽  
pp. 89
Author(s):  
Haopeng Liang

<div class="Section0"><div>Because rolling bearings have been working in an environment with complex and variable working conditions and large noise interference for a long time, the bearing fault diagnosis method has a poor diagnostic effect under variable working conditions. To solve this problem, we propose a residual neural network based on the diagnosis method of rolling bearing fault. The proposed method takes rolling bearing time-domain signal data as input. Because bearing signals have strong time-varying properties, we construct a multi-scale residual block that can not only learn features at different levels, but also expand the width and depth of the residual neural network. We use the advantages of the dilated convolution to expand the receptive field, replace part of the ordinary convolution in the multi-scale residual block with the dilated convolution, and design a multi-scale hollow residual block. The advantage is that the method is made by expanding the receptive field. It has a strong feature learning ability and can learn better features under limited data. Finally, we add a Dropout layer to discard a certain proportion of neurons after the fully connected layer, which can effectively avoid the negative impact of overfitting, and use Case Western Reserve University bearing dataset, the simulation experiment, and the SVM + EMD + Hilbert envelope spectrum, BPNN + EMD + Hilbert envelope spectrum and Resnet three ways of comparative analysis, the results show that the method under the variable condition of the fault diagnosis of rolling bearing has higher diagnosis accuracy, stronger noise resistance, and generalization ability.</div><p> </p></div><p> </p>


2021 ◽  
Vol 1792 (1) ◽  
pp. 012035
Author(s):  
Xingtong Zhu ◽  
Zhiling Huang ◽  
Jinfeng Chen ◽  
Junhao Lu

Sign in / Sign up

Export Citation Format

Share Document