scholarly journals Design of a Decoupling Fuzzy Control Scheme for Omnidirectional Inverted Pendulum Real-World Control

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 26083-26092
Author(s):  
Chih-Hui Chiu ◽  
Yao-Ting Hung ◽  
Ya-Fu Peng
2019 ◽  
Vol 11 (14) ◽  
pp. 3855 ◽  
Author(s):  
Chiu ◽  
Peng

In this study, a novelty dual Takagi-Sugeno (TS) fuzzy control scheme (DTSFCS) is proposed for real world system control. We propose using a ball robot (BR) system control problem, where the BR has the ability to move omnidirectionally. The proposed control scheme combines two fuzzy control approaches for a BR. In this fuzzy control approach, the TS fuzzy model was adopted for the fuzzy modeling of the BR. The concept of parallel distributed compensation (PDC) was utilized to develop a fuzzy control scheme from the TS fuzzy models. The linear matrix inequalities (LMIs) can formulate sufficient conditions. Moreover, in this study, the motors of the BR were mounted on two orthogonal axes. Then, the dual TS fuzzy controller was designed to independently operate without coupling. Finally, the efficiency of the proposed control scheme is illustrated by the experimental and simulation results that are presented in this study.


Author(s):  
Shuzhen Diao ◽  
Wei Sun ◽  
Le Wang ◽  
Jing Wu

AbstractThis study considers the tracking control problem of the nonstrict-feedback nonlinear system with unknown backlash-like hysteresis, and a finite-time adaptive fuzzy control scheme is developed to address this problem. More precisely, the fuzzy systems are employed to approximate the unknown nonlinearities, and the design difficulties caused by the nonlower triangular structure are also overcome by using the property of fuzzy systems. Besides, the effect of unknown hysteresis input is compensated by approximating an intermediate variable. With the aid of finite-time stability theory, the proposed control algorithm could guarantee that the tracking error converges to a smaller region. Finally, a simulation example is provided to further verify the above theoretical results.


2013 ◽  
Vol 765-767 ◽  
pp. 2004-2007
Author(s):  
Su Ying Zhang ◽  
Ying Wang ◽  
Jie Liu ◽  
Xiao Xue Zhao

Double inverted pendulum system is nonlinear and unstable. Fuzzy control uses some expert's experience knowledge and learns approximate reasoning algorithm. For it does not depend on the mathematical model of controlled object, it has been widely used for years. In practical engineering applications, most systems are nonlinear time-varying parameter systems. As the fuzzy control theory lacks of on-line self-learning and adaptive ability, it can not control the controlled object effectively. In order to compensate for these defects, it introduced adaptive, self-organizing, self-learning functions of neural network algorithm. We called it adaptive neural network fuzzy inference system (ANFIS). ANFIS not only takes advantage of the fuzzy control theory of abstract ability, the nonlinear processing ability, but also makes use of the autonomous learning ability of neural network, the arbitrary function approximation ability. The controller was applied to double inverted pendulum system and the simulation results showed that this method can effectively control the double inverted pendulum system.


2011 ◽  
Vol 403-408 ◽  
pp. 4850-4858
Author(s):  
Jagadish H. Pujar ◽  
S. F. Kodad

In this paper a novel sensorless speed control scheme of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and fuzzy based Model Reference Adaptive Systems (MRAS) speed estimator strategies has been proposed, which seems to be a boom in sensorless speed control schemes of AC drives. Normally, the conventional sensorless speed control performance of IM drive deteriorates at low speed. Hence the attention has been focused to improve the performance of the IM drive at low speed range as well, by implementing fuzzy control strategies. So, this research work describes a novel adaptive fuzzy based speed estimation mechanism which replaces the conventional PI controller used in MRAS adaptation mechanism. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results signify that the proposed control scheme provides satisfactory high dynamic performance and robustness during low speed operations of IM drive compare to conventional sensorless speed estimator of DTFC scheme.


Sign in / Sign up

Export Citation Format

Share Document